971 resultados para Video tracking
Resumo:
A collaborative video with Avril Huddy where two viewpoints, performer and documenter, were presented simultaneously to investigate Arakawa and Gin’s notion of “boundary-swaying”. In this performance-work, the performer influences what the camera is able to capture by engaging the documenter in a form of improvised dance. The performer’s movements appear impulsive and unpredictable, testing ways for the documenter to frame the performer’s movement. The images revealed by the documenter’s camera reflect a complexity of moments and co-incidences, evoking a sense of the performer’s embodied thinking within improvised movement. While a second camera uses a conventional wide angle shot to document the unfolding of the performance-work and track the connection between the documenter and the performer. While the performance-work itself is still highly-experimental, the ideas underpinning this exploration suggest how future investigations integrating more sensitive technology such as motion capture and tracking devises may be investigated. This performance-work formed part of the Creative Response Exhibition curated by Alan Prohm, Bill Lavender and Jason Nelson and a peer-review committee as part of the proceedings of the AG3 Online: Third International Arakawa and Gins Architecture and Philosophy Conference, hosted by the Centre for Public Culture and Ideas at Griffith University.
Resumo:
The solutions proposed in this thesis contribute to improve gait recognition performance in practical scenarios that further enable the adoption of gait recognition into real world security and forensic applications that require identifying humans at a distance. Pioneering work has been conducted on frontal gait recognition using depth images to allow gait to be integrated with biometric walkthrough portals. The effects of gait challenging conditions including clothing, carrying goods, and viewpoint have been explored. Enhanced approaches are proposed on segmentation, feature extraction, feature optimisation and classification elements, and state-of-the-art recognition performance has been achieved. A frontal depth gait database has been developed and made available to the research community for further investigation. Solutions are explored in 2D and 3D domains using multiple images sources, and both domain-specific and independent modality gait features are proposed.
Resumo:
This thesis investigates face recognition in video under the presence of large pose variations. It proposes a solution that performs simultaneous detection of facial landmarks and head poses across large pose variations, employs discriminative modelling of feature distributions of faces with varying poses, and applies fusion of multiple classifiers to pose-mismatch recognition. Experiments on several benchmark datasets have demonstrated that improved performance is achieved using the proposed solution.
Resumo:
The ARC Centre of Excellence in Creative Industries and Innovation (herewith CCI) was established with two simple policy objectives. One was to assess anecdotal and boosterish claims about the growth rates of the creative industries, and hence, to measure the size of the creative industries contribution to gross domestic product (GDP). The other was to ascertain the contribution of the creative industries to employment. Preliminary research detailed in Cunningham and Higgs (2009) showed that the existing industrial classifications did not incorporate the terminology of the creative industries, nor did they disaggregate new categories of digital work such as video games. However, we discovered that occupational codes provide a much more fine-grained account of work that would enable us to disaggregate and track economic activity that corresponded to creative industries terminology. Thus was born one major centrepiece of CCI research – the tracking of national occupational codes in pursuit of measuring creative industries policy outcomes. This paper commences with some description of empirical work that investigates creative occupations; however, the real point is to suggest that this type of detailed, occupation-based empirical work has important theoretical potential that has not yet been fully expended (though see Cunningham 2013; Hearn and Bridgstock 2014; Bakhshi, Freeman and Higgs 2013; Hartley and Potts 2014).
Resumo:
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
Resumo:
To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.
Resumo:
Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I–V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.
Resumo:
We contribute an empirically derived noise model for the Kinect sensor. We systematically measure both lateral and axial noise distributions, as a function of both distance and angle of the Kinect to an observed surface. The derived noise model can be used to filter Kinect depth maps for a variety of applications. Our second contribution applies our derived noise model to the KinectFusion system to extend filtering, volumetric fusion, and pose estimation within the pipeline. Qualitative results show our method allows reconstruction of finer details and the ability to reconstruct smaller objects and thinner surfaces. Quantitative results also show our method improves pose estimation accuracy. © 2012 IEEE.
Resumo:
This volume examines how disruptive innovations are reshaping industry boundaries and challenging conventional business models and practices in the industries for film, video and photography. The thirteen chapters provide a rich and diverse account of these processes from a wide range of country contexts. The book fills the gap between the study of disruption by innovation scholars in business schools and the recognition of disruption by academics and practitioners from non-business school disciplines and contexts, including the broader social sciences.
Resumo:
Three thousand liters of water were infiltrated from a 4 m diameter pond to track flow and transport inside fractured carbonates with 20-40 % porosity. Sixteen time-lapse 3D Ground Penetrating Radar (GPR) surveys with repetition intervals between 2 hrs and 5 days monitored the spreading of the water bulb in the subsurface. Based on local travel time shifts between repeated GPR survey pairs, localized changes of volumetric water content can be related to the processes of wetting, saturation and drainage. Deformation bands consisting of thin sub vertical sheets of crushed grains reduce the magnitude of water content changes but enhance flow in sheet parallel direction. This causes an earlier break through across a stratigraphic boundary compared to porous limestone without deformation bands. This experiment shows how time-lapse 3D GPR or 4D GPR can non-invasively track ongoing flow processes in rock-volumes of over 100 m3.
Resumo:
There is an increased interest on the use of UAVs for environmental research and to track bush fire plumes, volcanic plumes or pollutant sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A memory based and gradient based approach, were developed and compared. A method for generating sparse plumes was also developed. Results indicate the ability of the algorithms to track plumes in 2D and 3D.
Resumo:
The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.
Resumo:
This study constructs performance prediction models to estimate the end-user perceived video quality on mobile devices for the latest video encoding techniques –VP9 and H.265. Both subjective and objective video quality assessments were carried out for collecting data and selecting the most desirable predictors. Using statistical regression, two models were generated to achieve 94.5% and 91.5% of prediction accuracies respectively, depending on whether the predictor derived from the objective assessment is involved. These proposed models can be directly used by media industries for video quality estimation, and will ultimately help them to ensure a positive end-user quality of experience on future mobile devices after the adaptation of the latest video encoding technologies.