973 resultados para Video genre classification
Resumo:
Lipids available in fingermark residue represent important targets for enhancement and dating techniques. While it is well known that lipid composition varies among fingermarks of the same donor (intra-variability) and between fingermarks of different donors (inter-variability), the extent of this variability remains uncharacterised. Thus, this worked aimed at studying qualitatively and quantitatively the initial lipid composition of fingermark residue of 25 different donors. Among the 104 detected lipids, 43 were reported for the first time in the literature. Furthermore, palmitic acid, squalene, cholesterol, myristyl myristate and myristyl myristoleate were quantified and their correlation within fingermark residue was highlighted. Ten compounds were then selected and further studied as potential targets for dating or enhancement techniques. It was shown that their relative standard deviation was significantly lower for the intra-variability than for the inter-variability. Moreover, the use of data pretreatments could significantly reduce this variability. Based on these observations, an objective donor classification model was proposed. Hierarchical cluster analysis was conducted on the pre-treated data and the fingermarks of the 25 donors were classified into two main groups, corresponding to "poor" and "rich" lipid donors. The robustness of this classification was tested using fingermark replicates of selected donors. 86% of these replicates were correctly classified, showing the potential of such a donor classification model for research purposes in order to select representative donors based on compounds of interest.
Resumo:
The highly polymorphic so called "Trichia hispida group" is taxonomically problematic. According to different authors, one to about one hundred species are recognized in this group. Some recent publications admit 8 species for Central Euorpe. The present study gives arguments from biochemical data (12 enzymatic loci are electrophoretically analysed) for regrouping 5 morphological types into 2 species : Trichia sericea (Müller) var. sericea, plebeia, montana and striolata, and T.hispida(L.). A multivariate analysis of morphological measurments, and patterns of coexistence seem to corroborate this interpretation. T. sericea presents a wider ecological and morphological range, and both species need further investigations on their ecological and taxonomical relationship.
Resumo:
In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.
Resumo:
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.
Resumo:
Numerical analyses (correspondence analysis, ascending hierarchical classification, and cladistics) were done with morphological characters of adult phlebotomine sand flies. The resulting classification largely confirms that of classical taxonomy for supra-specific groups from the Old World, though the positions of some groups are adjusted. The taxa Spelaeophlebotomus Theodor 1948, Idiophlebotomus Quate & Fairchild 1961, Australophlebotomus Theodor 1948 and Chinius Leng 1987 are notably distinct from other Old World groups, particularly from the genus Phlebotomus Rondani & Berté 1840. Spelaeomyia Theodor 1948 and, in particular, Parvidens Theodor & Mesghali 1964 are clearly separate from Sergentomyia França & Parrot 1920.
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.