948 resultados para VISIBLE SPECTRA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

América Latina avanza en un sentido histórico progresista, pero la construcción de las nuevas sociedades enfrenta contradicciones socio-económicas, políticas y culturales que marcan un camino de ascensos y retrocesos, los cuales forman parte del gran movimiento de la determinación social de la salud y de la vida sobre el planeta. En ese marco, la expansión a gran escala de formas más agresivas de acumulación de capital en todas las esferas de la vida, incluidas las de la actividad física y el deporte, es el centro y la lógica mayor de una visión empresarial que penetra todos los poros del vivir, negando las potencialidades saludables del esparcimiento deportivo y de la educación física. Una visión crítica de la determinación social se vuelve indispensable para estudiar y confrontar la negación del deporte como lógica de la vida y los mega-espectáculos: cara visible del carácter predatorio y malsano del “big-bussines” deportivo.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a flexible chemical box model with full heterogeneous chemistry, intercepts of chemically modified Langley plots have been computed for the 5 years of zenith-sky NO2 data from Faraday in Antarctica (65°S). By using these intercepts as the effective amount in the reference spectrum, drifts in zero of total vertical NO2 were much reduced. The error in zero of total NO2 is ±0.03×1015 moleccm−2 from one year to another. This error is small enough to determine trends in midsummer and any variability in denoxification between midwinters. The technique also suggests a more sensitive method for determining N2O5 from zenith-sky NO2 data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/aims: Scant consideration has been given to the variation in structure of the human amniotic membrane (AM) at source or to the significance such differences might have on its clinical transparency. Therefore, we applied our experience of quantifying corneal transparency to AM. Methods: Following elective caesarean, AM from areas of the fetal sac distal and proximal (ie, adjacent) to the placenta was compared with freeze-dried AM. The transmission of light through the AM samples was quantified spectrophotometrically; also, tissue thickness was measured by light microscopy and refractive index by refractometry. Results: Freeze-dried and freeze-thawed AM samples distal and proximal to the placenta differed significantly in thickness, percentage transmission of visible light and refractive index. The thinnest tissue (freeze-dried AM) had the highest transmission spectra. The thickest tissue (freeze-thawed AM proximal to the placenta) had the highest refractive index. Using the direct summation of fields method to predict transparency from an equivalent thickness of corneal tissue, AM was found to be up to 85% as transparent as human cornea. Conclusion: When preparing AM for ocular surface reconstruction within the visual field, consideration should be given to its original location from within the fetal sac and its method of preservation, as either can influence corneal transparency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the vertical velocity of ice crystals observed with a 1.5micron Doppler lidar from a continuous sample of stratiform ice clouds over 17 months show that the distribution of Doppler velocity varies strongly with temperature, with mean velocities of 0.2m/s at -40C, increasing to 0.6m/s at -10C due to particle growth and broadening of the size spectrum. We examine the likely influence of crystals smaller than 60microns by forward modelling their effect on the area-weighted fall speed, and comparing the results to the lidar observations. The comparison strongly suggests that the concentration of small crystals in most clouds is much lower than measured in-situ by some cloud droplet probes. We argue that the discrepancy is likely due to shattering of large crystals on the probe inlet, and that numerous small particles should not be included in numerical weather and climate model parameterizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the "Brown and Francis" mass-size relationship is used. The comparisons spanned radar reflectivity values from -15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m(-3), and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration "intercept parameter" rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over Southern England. It is found that the model predicted mean I WC to within 10% of the observations at temperatures between -30 degrees and - 10 degrees C but tended to underestimate it by around a factor of 2 at colder temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of radar and lidar in space offers the unique potential to retrieve vertical profiles of ice water content and particle size globally, and two algorithms developed recently claim to have overcome the principal difficulty with this approach-that of correcting the lidar signal for extinction. In this paper "blind tests" of these algorithms are carried out, using realistic 94-GHz radar and 355-nm lidar backscatter profiles simulated from aircraft-measured size spectra, and including the effects of molecular scattering, multiple scattering, and instrument noise. Radiation calculations are performed on the true and retrieved microphysical profiles to estimate the accuracy with which radiative flux profiles could be inferred remotely. It is found that the visible extinction profile can be retrieved independent of assumptions on the nature of the size distribution, the habit of the particles, the mean extinction-to-backscatter ratio, or errors in instrument calibration. Local errors in retrieved extinction can occur in proportion to local fluctuations in the extinction-to-backscatter ratio, but down to 400 m above the height of the lowest lidar return, optical depth is typically retrieved to better than 0.2. Retrieval uncertainties are greater at the far end of the profile, and errors in total optical depth can exceed 1, which changes the shortwave radiative effect of the cloud by around 20%. Longwave fluxes are much less sensitive to errors in total optical depth, and may generally be calculated to better than 2 W m(-2) throughout the profile. It is important for retrieval algorithms to account for the effects of lidar multiple scattering, because if this is neglected, then optical depth is underestimated by approximately 35%, resulting in cloud radiative effects being underestimated by around 30% in the shortwave and 15% in the longwave. Unlike the extinction coefficient, the inferred ice water content and particle size can vary by 30%, depending on the assumed mass-size relationship (a problem common to all remote retrieval algorithms). However, radiative fluxes are almost completely determined by the extinction profile, and if this is correct, then errors in these other parameters have only a small effect in the shortwave (around 6%, compared to that of clear sky) and a negligible effect in the longwave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mizushima and Venkateswarlu showed in 1953 that certain molecules have the property that excited vibrational states may possess rotational spectra even when the rotational spectrum of the ground vibrational state is forbidden by symmetry. We call such a spectrum a vibrationally induced rotational spectrum, and have made a systematic examination of the point groups which permit such behaviour. We also give formulae for the approximate line frequencies and intensities in these spectra, and discuss some of the problems involved in observing them. The spectra can only arise from degenerate vibrational states, and are of three possible types: i) symmetric top perpendicular spectra, shown by molecules belonging to the point groups Dnh, Dn and Cnh, where n is odd; (ii) symmetric top parallel spectra, shown by molecules belonging to Dnd and S2n, where n is even; and (iii) spherical top spectra, shown by molecules belonging to T or Td. Excited vibrational states of polar molecules of point groups Cnv or Cn, where n is odd, may also possess vibrationally induced perpendicular components of type (i), in addition to their ordinary parallel spectra. In addition to the above limitations on the point groups there are, in general, limitations on the symmetry species of the degenerate vibrational states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave spectra of oxetane (trimethylene oxide) and its three symmetrically deuterated isotopic species have been observed on a Hewlett-Packard microwave spectrometer from 26.5 to 40 GHz. For the parent species, the β-d2 and the αα′-d4 species, about 300 lines have been assigned for each molecule, and for the d6 species more than 600 lines have been assigned. The assignments range from v = 0 to v = 5 in the puckering vibration; although they are mostly Q transitions, either 3 or 4 R transitions have been observed for each vibrational state. The spectra have been interpreted using an effective rotational hamiltonian for each vibrational state, including five quartic distortion constants according to Watson's formulation, and a variable number of sextic distortion constants; in general, the lines are fitted to about ± 10 kHz. The distortion constants show an anomalous zig-zag dependence on the puckering vibrational quantum number, similar to that first observed for the rotational constants by Gwinn and coworkers. This is interpreted according to a simple modification of the standard theory of centrifugal distortion, involving the double minimum potential function in the puckering coordinate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra of thoformaldehyde, H2CS and D2CS, were observed in the gas phase at a resolution of better than 0.1 cm−1 from 4000 to 400 cm−1 using a Nicolet FTIR system. Vibrational band origins and rotational constants were determined for ν2, ν3, ν4, and ν6 of H2CS and for ν1, ν2, ν3, ν4, and ν6 of D2CS. The ν3, ν4, and ν6 bands of H2CS were analyzed as a set of three Coriolis interacting bands, and three Coriolis constants were determined; similarly the ν4 and ν6 bands of D2CS were analyzed as a pair of interacting bands and one Coriolis constant was determined. A general harmonic force field was determined, without constraints, to fit the vibrational wavenumbers, Coriolis constants, and centrifugal distortion constants. A zero-point (rz) structure was determined from the ground-state rotational constants, and the equilibrium (re) bond lengths were estimated.