796 resultados para User-based collaborative filtering
Resumo:
20th International Conference on Reliable Software Technologies - Ada-Europe 2015 (Ada-Europe 2015), 22 to 26, Jun, 2015, Madrid, Spain.
Resumo:
IEEE International Conference on Pervasive Computing and Communications (PerCom). 23 to 26, Mar, 2015, PhD Forum. Saint Louis, U.S.A..
Resumo:
Software tools in education became popular since the widespread of personal computers. Engineering courses lead the way in this development and these tools became almost a standard. Engineering graduates are familiar with numerical analysis tools but also with simulators (e.g. electronic circuits), computer assisted design tools and others, depending on the degree. One of the main problems with these tools is when and how to start use them so that they can be beneficial to students and not mere substitutes for potentially difficult calculations or design. In this paper a software tool to be used by first year students in electronics/electricity courses is presented. The growing acknowledgement and acceptance of open source software lead to the choice of an open source software tool – Scilab, which is a numerical analysis tool – to develop a toolbox. The toolbox was developed to be used as standalone or integrated in an e-learning platform. The e-learning platform used was Moodle. The first approach was to assess the mathematical skills necessary to solve all the problems related to electronics and electricity courses. Analysing the existing circuit simulators software tools, it is clear that even though they are very helpful by showing the end result they are not so effective in the process of the students studying and self learning since they show results but not intermediate steps which are crucial in problems that involve derivatives or integrals. Also, they are not very effective in obtaining graphical results that could be used to elaborate reports and for an overall better comprehension of the results. The developed tool was based on the numerical analysis software Scilab and is a toolbox that gives their users the opportunity to obtain the end results of a circuit analysis but also the expressions obtained when derivative and integrals calculations, plot signals, obtain vector diagrams, etc. The toolbox runs entirely in the Moodle web platform and provides the same results as the standalone application. The students can use the toolbox through the web platform (in computers where they don't have installation privileges) or in their personal computers by installing both the Scilab software and the toolbox. This approach was designed for first year students from all engineering degrees that have electronics/electricity courses in their curricula.
Resumo:
It is well-known that ROVs require human intervention to guarantee the success of their assignment, as well as the equipment safety. However, as its teleoperation is quite complex to perform, there is a need for assisted teleoperation. This study aims to take on this challenge by developing vision-based assisted teleoperation maneuvers, since a standard camera is present in any ROV. The proposed approach is a visual servoing solution, that allows the user to select between several standard image processing methods and is applied to a 3-DOF ROV. The most interesting characteristic of the presented system is the exclusive use of the camera data to improve the teleoperation of an underactuated ROV. It is demonstrated through the comparison and evaluation of standard implementations of different vision methods and the execution of simple maneuvers to acquire experimental results, that the teleoperation of a small ROV can be drastically improved without the need to install additional sensors.
Resumo:
The paper presents a multi-robot cooperative framework to estimate the 3D position of dynamic targets, based on bearing-only vision measurements. The uncertainty of the observation provided by each robot equipped with a bearing-only vision system is effectively addressed for cooperative triangulation purposes by weighing the contribution of each monocular bearing ray in a probabilistic manner. The envisioned framework is evaluated in an outdoor scenario with a team of heterogeneous robots composed of an Unmanned Ground and Aerial Vehicle.
Resumo:
A evolução tecnológica das últimas décadas na área das Tecnologias da Informação e Comunicação (TIC) contribuiu para a proliferação de fontes de informação e de sistemas de partilha de recursos. As diversas redes sociais são um exemplo paradigmático de sistemas de partilha tanto de informação como de recursos (e.g. audiovisuais). Essa abundância crescente de recursos e fontes aumenta a importância de sistemas capazes de recomendar em tempo útil recursos personalizados, tendo por base o perfil e o contexto do utilizador. O objetivo deste projeto é partilhar e recomendar locais, artigos e vídeos em função do contexto do utilizador assim como proporcionar uma experiência mais rica de reprodução dos vídeos partilhados, simulando as condições de gravação dos vídeos. Este sistema teve como inspiração dois projetos anteriormente desenvolvidos de partilha e recomendação de locais, artigos e vídeos turísticos em função da localização do utilizador. O sistema desenvolvido consiste numa aplicação distribuída composta por um módulo cliente Android, que inclui a interface com o utilizador e o consumo direto de serviços externos de suporte, e um módulo servidor que controla o acesso à base de dados central e inclui o serviço de recomendação baseado no contexto do utilizador. A comunicação entre os módulos cliente e servidor utiliza um protocolo do nível de aplicação dedicado. As recomendações geradas pelo sistema têm por base o perfil de utilizador, informação contextual (posição do utilizador, data e hora atual e velocidade atual do utilizador) e podem ser geradas a pedido do utilizador ou automaticamente, caso sejam encontrados pontos de interesse de grande relevância para o utilizador. Os pontos de interesse recomendados são apresentados com recurso ao Google Maps, incluindo o período de funcionamento, artigos complementares e a reprodução imersiva dos vídeos relacionados. Essa imersão tem em consideração as condições meteorológicas, temporais e espaciais aquando da gravação do vídeo.
Resumo:
The increasing number of television channels, on-demand services and online content, is expected to contribute to a better quality of experience for a costumer of such a service. However, the lack of efficient methods for finding the right content, adapted to personal interests, may lead to a progressive loss of clients. In such a scenario, recommendation systems are seen as a tool that can fill this gap and contribute to the loyalty of users. Multimedia content, namely films and television programmes are usually described using a set of metadata elements that include the title, a genre, the date of production, and the list of directors and actors. This paper provides a deep study on how the use of different metadata elements can contribute to increase the quality of the recommendations suggested. The analysis is conducted using Netflix and Movielens datasets and aspects such as the granularity of the descriptions, the accuracy metric used and the sparsity of the data are taken into account. Comparisons with collaborative approaches are also presented.
Resumo:
Near real time media content personalisation is nowadays a major challenge involving media content sources, distributors and viewers. This paper describes an approach to seamless recommendation, negotiation and transaction of personalised media content. It adopts an integrated view of the problem by proposing, on the business-to-business (B2B) side, a brokerage platform to negotiate the media items on behalf of the media content distributors and sources, providing viewers, on the business-to-consumer (B2C) side, with a personalised electronic programme guide (EPG) containing the set of recommended items after negotiation. In this setup, when a viewer connects, the distributor looks up and invites sources to negotiate the contents of the viewer personal EPG. The proposed multi-agent brokerage platform is structured in four layers, modelling the registration, service agreement, partner lookup, invitation as well as item recommendation, negotiation and transaction stages of the B2B processes. The recommendation service is a rule-based switch hybrid filter, including six collaborative and two content-based filters. The rule-based system selects, at runtime, the filter(s) to apply as well as the final set of recommendations to present. The filter selection is based on the data available, ranging from the history of items watched to the ratings and/or tags assigned to the items by the viewer. Additionally, this module implements (i) a novel item stereotype to represent newly arrived items, (ii) a standard user stereotype for new users, (iii) a novel passive user tag cloud stereotype for socially passive users, and (iv) a new content-based filter named the collinearity and proximity similarity (CPS). At the end of the paper, we present off-line results and a case study describing how the recommendation service works. The proposed system provides, to our knowledge, an excellent holistic solution to the problem of recommending multimedia contents.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The system’s performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.
Resumo:
In the last few years the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how good is a voice when the application is a speech based interface. In this paper we present a new automatic voice pleasantness classification system based on prosodic and acoustic patterns of voice preference. Our study is based on a multi-language database composed by female voices. In the objective performance evaluation the system achieved a 7.3% error rate.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Context-aware recommendation of personalised tourism resources is possible because of personal mobile devices and powerful data filtering algorithms. The devices contribute with computing capabilities, on board sensors, ubiquitous Internet access and continuous user monitoring, whereas the filtering algorithms provide the ability to match the profile (interests and the context) of the tourist against a large knowledge bases of tourism resources. While, in terms of technology, personal mobile devices can gather user-related information, including the user context and access multiple data sources, the creation and maintenance of an updated knowledge base of tourism-related resources requires a collaborative approach due to the heterogeneity, volume and dynamic nature of the resources. The current PhD thesis aims to contribute to the solution of this problem by adopting a Crowdsourcing approach for the collaborative maintenance of the knowledge base of resources, Trust and Reputation for the validation of uploaded resources as well as publishers, Big Data for user profiling and context-aware filtering algorithms for the personalised recommendation of tourism resources.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática