947 resultados para Unconditional maximum likelihood criterion
Resumo:
The genus Prunus L. is large and economically important. However, phylogenetic relationships within Prunus at low taxonomic level, particularly in the subgenus Amygdalus L. s.l., remain poorly investigated. This paper attempts to document the evolutionary history of Amygdalus s.l. and establishes a temporal framework, by assembling molecular data from conservative and variable molecular markers. The nuclear s6pdh gene in combination with the plastid trnSG spacer are analyzed with bayesian and maximum likelihood methods. Since previous phylogenetic analysis with these markers lacked resolution, we additionally analyzed 13 nuclear SSR loci with the δµ2 distance, followed by an unweighted pair group method using arithmetic averages algorithm. Our phylogenetic analysis with both sequence and SSR loci confirms the split between sections Amygdalus and Persica, comprising almonds and peaches, respectively. This result is in agreement with biogeographic data showing that each of the two sections is naturally distributed on each side of the Central Asian Massif chain. Using coalescent based estimations, divergence times between the two sections strongly varied when considering sequence data only or combined with SSR. The sequence-only based estimate (5 million years ago) was congruent with the Central Asian Massif orogeny and subsequent climate change. Given the low level of differentiation within the two sections using both marker types, the utility of combining microsatellites and data sequences to address phylogenetic relationships at low taxonomic level within Amygdalus is discussed. The recent evolutionary histories of almond and peach are discussed in view of the domestication processes that arose in these two phenotypically-diverging gene pools: almonds and peaches were domesticated from the Amygdalus s.s. and Persica sections, respectively. Such economically important crops may serve as good model to study divergent domestication process in close genetic pool.
Resumo:
Allostatic load (AL) is a marker of physiological dysregulation which reflects exposure to chronic stress. High AL has been related to poorer health outcomes including mortality. We examine here the association of socioeconomic and lifestyle factors with AL. Additionally, we investigate the extent to which AL is genetically determined. We included 803 participants (52% women, mean age 48±16years) from a population and family-based Swiss study. We computed an AL index aggregating 14 markers from cardiovascular, metabolic, lipidic, oxidative, hypothalamus-pituitary-adrenal and inflammatory homeostatic axes. Education and occupational position were used as indicators of socioeconomic status. Marital status, stress, alcohol intake, smoking, dietary patterns and physical activity were considered as lifestyle factors. Heritability of AL was estimated by maximum likelihood. Women with a low occupational position had higher AL (low vs. high OR=3.99, 95%CI [1.22;13.05]), while the opposite was observed for men (middle vs. high OR=0.48, 95%CI [0.23;0.99]). Education tended to be inversely associated with AL in both sexes(low vs. high OR=3.54, 95%CI [1.69;7.4]/OR=1.59, 95%CI [0.88;2.90] in women/men). Heavy drinking men as well as women abstaining from alcohol had higher AL than moderate drinkers. Physical activity was protective against AL while high salt intake was related to increased AL risk. The heritability of AL was estimated to be 29.5% ±7.9%. Our results suggest that generalized physiological dysregulation, as measured by AL, is determined by both environmental and genetic factors. The genetic contribution to AL remains modest when compared to the environmental component, which explains approximately 70% of the phenotypic variance.
Resumo:
A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program
Resumo:
While general equilibrium theories of trade stress the role of third-country effects, little work has been done in the empirical foreign direct investment (FDI) literature to test such spatial linkages. This paper aims to provide further insights into long-run determinants of Spanish FDI by considering not only bilateral but also spatially weighted third-country determinants. The few studies carried out so far have focused on FDI flows in a limited number of countries. However, Spanish FDI outflows have risen dramatically since 1995 and today account for a substantial part of global FDI. Therefore, we estimate recently developed Spatial Panel Data models by Maximum Likelihood (ML) procedures for Spanish outflows (1993-2004) to top-50 host countries. After controlling for unobservable effects, we find that spatial interdependence matters and provide evidence consistent with New Economic Geography (NEG) theories of agglomeration, mainly due to complex (vertical) FDI motivations. Spatial Error Models estimations also provide illuminating results regarding the transmission mechanism of shocks.
Resumo:
Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.
Resumo:
Tässä tutkielmassa estimoidaan korkomallin parametrit Maximum likelihood metodilla sekä näytetään kuinka mallintaa lyhyen koron evoluutiota ja korkokäyrän rakennetta.
Resumo:
The encapsulation of metal clusters in endohedral metallofullerenes (EMFs) takes place in cages that in most cases are far from being the most stable isomer in the corresponding hollow fullerenes. There exist several possible explanations for the choice of the hosting cages in EMFs, although the final reasons are actually not totally well understood. Moreover, the reactivity and regioselectivity of (endohedral metallo)fullerenes have in the past decade been shown to be generally dependent on a number of factors, such as the size of the fullerene cage, the type of cluster that is being encapsulated, and the number of electrons that are transferred formally from the cluster to the fullerene cage. Different rationalizations of the observed trends had been proposed, based on bond lengths, pyramidalization angles, shape and energies of (un)occupied orbitals, deformation energies of the cages, or separation distances between the pentagon rings. Recently, in our group we proposed that the quest for the maximum aromaticity (maximum aromaticity criterion) determines the most suitable hosting carbon cage for a given metallic cluster (i.e. EMF stabilization), including those cases where the IPR rule is not fulfilled. Moreover, we suggested that local aromaticity plays a determining role in the reactivity of EMFs, which can be used as a criterion for understanding and predicting the regioselectivity of different reactions such as Diels-Alder cycloadditions or Bingel-Hirsch reactions. This review highlights different aspects of the aromaticity of fullerenes and EMFs, starting from how this can be measured and ending by how it can be used to rationalize and predict their molecular structure and reactivity
Resumo:
Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database
Resumo:
We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging.
Resumo:
In wireless communications the transmitted signals may be affected by noise. The receiver must decode the received message, which can be mathematically modelled as a search for the closest lattice point to a given vector. This problem is known to be NP-hard in general, but for communications applications there exist algorithms that, for a certain range of system parameters, offer polynomial expected complexity. The purpose of the thesis is to study the sphere decoding algorithm introduced in the article On Maximum-Likelihood Detection and the Search for the Closest Lattice Point, which was published by M.O. Damen, H. El Gamal and G. Caire in 2003. We concentrate especially on its computational complexity when used in space–time coding. Computer simulations are used to study how different system parameters affect the computational complexity of the algorithm. The aim is to find ways to improve the algorithm from the complexity point of view. The main contribution of the thesis is the construction of two new modifications to the sphere decoding algorithm, which are shown to perform faster than the original algorithm within a range of system parameters.
Resumo:
The culture and commercialization of ornamental plants have considerably increased in the last years. To supply the commercial demand, several Hemerocallis and Impatiens varieties have been bred for appreciated qualities such as flowers with a diversity of shapes and colors. With the aim of characterizing the tobamovirus isolated from Hemerocallis sp. (tobamo-H) and Impatiens hawkeri (tobamo-I) from the USA and São Paulo, respectively, as well as to establish phylogenetic relationships between them and other Tobamovirus species, the viruses were submitted to RNA extraction, RT-PCR amplification, coat-protein gene sequencing and phylogenetic analyses. Comparison of tobamovirus homologous sequences yielded values superior to 98.5% of identity with Tomato mosaic virus (ToMV) isolates at the nucleotide level. In relation to tobamo-H, 100% of identity with ToMV from tomatoes from Australia and Peru was found. Based on maximum likelihood (ML) analysis it was suggested that tobamo-H and tobamo-I share a common ancestor with ToMV, Tobacco mosaic virus, Odontoglossum ringspot virus and Pepper mild mottle virus. The tree topology reconstructed under ML methodology shows a monophyletic group, supported by 100% of bootstrap, consisting of various ToMV isolates from different hosts, including some ornamentals, from different geographical locations. The results indicate that Hemerocallis sp. and I. hawkeri are infected by ToMV. This is the first report of the occurrence of this virus in ornamental species in Brazil.
Resumo:
This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR) of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams") of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.
Resumo:
A study about the spatial variability of data of soil resistance to penetration (RSP) was conducted at layers 0.0-0.1 m, 0.1-0.2 m and 0.2-0.3 m depth, using the statistical methods in univariate forms, i.e., using traditional geostatistics, forming thematic maps by ordinary kriging for each layer of the study. It was analyzed the RSP in layer 0.2-0.3 m depth through a spatial linear model (SLM), which considered the layers 0.0-0.1 m and 0.1-0.2 m in depth as covariable, obtaining an estimation model and a thematic map by universal kriging. The thematic maps of the RSP at layer 0.2-0.3 m depth, constructed by both methods, were compared using measures of accuracy obtained from the construction of the matrix of errors and confusion matrix. There are similarities between the thematic maps. All maps showed that the RSP is higher in the north region.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
The air dry-bulb temperature (t db),as well as the black globe humidity index (BGHI), exert great influence on the development of broiler chickens during their heating phase. Therefore, the aim of this study was to analyze the structure and the magnitude of the t db and BGHI spatial variability, using geostatistics tools such as semivariogram analysis and also producing kriging maps. The experiment was conducted in the west mesoregion of the states of Minas Gerais in 2010, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the firsts 14 days of the birds' life. The data were registered at intervals of five minutes in the period from 8 a.m. to 10 a.m. The variables were evaluated by variograms fitted by residual maximum likelihood (REML) testing the Spherical and Exponential models. Kriging maps were generated based on the best model used to fit the variogram. It was possible to characterize the variability of the t db and BGHI, which allowed observing the spatial dependence by using geostatistics techniques. In addition, the use of geostatistics and distribution maps made possible to identify problems in the heating system in regions inside the broiler house that may harm the development of chicks.