926 resultados para U.S. Global Change Research Program.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In developing meaningful mitigation strategies to combat desertification, it is important to address the complex constellation of desertification under different bio-physical, social, demographic, political and economic conditions. In particular, desertification can be described as a cluster of key processes of global change which together form a typical syndrome. A critical reflection on the potential of research to help mitigate desertification will be a useful first step, before addressing the requirements for research partnerships between institutions at local levels and beyond. A practical example from Eritrea, an ecoregion which has been plagued by desertification for many centuries, is given at the end of the paper. It illustrates options for generating the necessary data and developing useful information in order to enhance the impact of research on sustainable development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Institutions are one of the decisive factors which enable, constrain and shape adaptation to the impacts of climate change, variability and extreme events. However, current understanding of institutions in adaptation situations is fragmented across the scientific community, evidence diverges, and cumulative learning beyond single studies is limited. This study adopts a diagnostic approach to elaborate a nuanced understanding of institutional barriers and opportunities in climate adaptation by means of a model-centred meta-analysis of 52 case studies of public climate adaptation in Europe. The first result is a novel taxonomy of institutional attributes in adaptation situations. It conceptually organises and decomposes the many details of institutions that empirical research has shown to shape climate adaptation. In the second step, the paper identifies archetypical patterns of institutional traps and trade-offs which hamper adaptation. Thirdly, corresponding opportunities are identified that enable actors to alleviate, prevent or overcome specific institutional traps or trade-offs. These results cast doubt on the validity of general institutional design principles for successful adaptation. In contrast to generic principles, the identified opportunities provide leverage to match institutions to specific governance problems that are encountered in specific contexts. Taken together, the results may contribute to more coherence and integration of adaptation research that we need if we are to foster learning about the role of institutions in adaptation situations in a cumulative fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gender-fair language (GFL) is a symmetric linguistic treatment of women and men. To create GFL two principle strategies can be deployed. Neutralization means that gender-unmarked forms (police officer) are used to substitute the male-biased (policeman). Feminization, implies that feminine forms of nouns are used systematically to make female referents visible. The results of a comprehensive European research program provide evidence in support of a non-discrimination policy in language, yet identify the potential setbacks preventing linguistic reforms to be effective. In general, studies indicate positive effects of GFL. In an applied context, for example women feel more motivated to apply for the position if a job advertisement is formulated in a GFL. However, negative effects of reformed usage were also reported specifically when GFL is novel. For example, a woman referred to as a chairperson was evaluated lower in occupational status than a woman referred to as a chairman.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Governance of food systems is a poorly understood determinant of food security. Much scholarship on food systems governance is non-empirical, while existing research is often case study-based and theoretically and methodologically incommensurable. This frustrates aggregation of evidence and generalisation. We undertook a systematic review of methods used in food systems governance research with a view to identifying a core set of indicators for future research. We gathered literature through a structured consultation and sampling from recent reviews. Indicators were identified and classified according to the levels and sectors they investigate. We found a concentration of indicators in food production at local to national levels and a sparseness in distribution and consumption. Unsurprisingly, many indicators of institutional structure were found, while agency-related indicators are moderately represented. We call for piloting and validation of these indicators and for methodological development to fill gaps identified. These efforts are expected to support a more consolidated future evidence base and eventual meta-analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a near-continuous, stable isotopic record for the Pliocene-Pleistocene (4.8 to 0.8 Ma) from Ocean Drilling Program Site 704 in the sub-Antarctic South Atlantic (47°S, 7°E). During the early to middle Pliocene (4.8 to 3.2 Ma), variation in delta18O was less than ~0.5 per mil, and absolute values were generally less than those of the Holocene. These results indicate some warming and minor deglaciation of Antarctica during intervals of the Pliocene but are inconsistent with scenarios calling for major warming and deglaciation of the Antarctic ice sheet. The climate System operated within relatively narrow limits prior to ~3.2 Ma, and the Antarctic cryosphere probably did not fluctuate on a large scale until the late Pliocene. Benthic oxygen isotopic values exceeded 3 per mil for the first time at 3.16 Ma. The amplitude and mean of the delta18O signal increased at 2.7 Ma, suggesting a shift in climate mode during the latest Gauss. The greatest delta18O values of the Gaus anti Gilbert chrons occurred at ~2.6 Ma, just below a hiatus that removed the interval from ~2.6 to 2.3 Ma in Site 704. These results agree with those from Subantarctic Site 514, which suggest that the latest Gauss (2.68 to 2.47 Ma) was the time of greatest change in Neogene climate in the northern Antarctic and Subanthtic regions. During this period, surface water cooled as the Polar Front Zone (PFZ) migrated north and perennial sea ice Cover expanded into the Subantarctic region. Antarctic ice volume increased and the ventilation rate of Southern Ocean deep water decreased during glacial events after 2.7 Ma. We suggest that these changes in the Southern Ocean were related to a gradual lowering of sea level and a reduction in the flux of North Atlantic Deep Water (NADW) with the Initiation of ice growth in the northern hemisphere. The early Matuyama Chron (~ 2.3 to 1.7 Ma) was marked by relatively warm climates in the Southern Ocean except for strong glacial events associated with isotopic stages 82 (2.027 Ma), 78 (1.941 Ma), and 70 (1.782 Ma). At 1.67 Ma (stage 65/64 transition), surface waters cooled as the PFZ migrated equatorward and oscillated about a far northerly position for a prolonged interval between 1.67 and 1.5 Ma (stages 65 to 57). Beginning at ~1.42 Ma (stage 52), all parameters (delta18O, delta13C, %opal, %CaCO3) in Hole 704 become highly correlated with each other and display a very strong 41-kyr cyclicity. This increase in the importance of the 41-kyr cycle is attributed to an increase in the amplitude of the Earth's obliquity cycle that was likely reinforced by increased glacial suppression of NADW, which may explain the tightly coupled response that developed between the Southern Ocean and the North Atlantic beginning at ~1.42 Ma (stage 52).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.