994 resultados para Transverse vibrations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific missions constitute fundamental cornerstones of space agencies such as ESA and NASA. Modern astronomy could not be understood without the data provided by these missions. Scientists need to design very carefully onboard instruments. Payloads have to survive the crucial launch moment and later perform well in the really harsh space environ-ment. It is very important that the instrument conceptual idea can be engineered to sustain all those loads

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses two aspects of the behavior of interior reinforced concrete waffle flat plate?column connections under lateral loads: the share of the unbalanced moment between flexure and excentric shear, and the effect of the transverse beams. A non-linear finite element model (benchmark model) was developed and calibrated with the results of quasi-static cyclic tests conducted on a 3/5 scale specimen. First, from this numerical model, the portion cv of the unbalanced moment transferred by the excentricity of shear about the centroid of the critical sections defined by Eurocode 2 (EC-2) and by ACI 318-11 was calculated and compared with the share-out prescribed by these codes. It is found that while the critical section of EC-2 is consistent with the cv provided by this code, in the case of ACI 318-11, the value assigned to cv is far below (about 50% smaller) the actual one obtained with the numerical simulations. Second, from the benchmark model, seven additional models were developed by varying the depth D of the transverse beam over the thickness h of the plate. It was found that the ductility of the connection and the effective width of the plate can respectively be increased up to 50% and 10% by raising D/h to 2 and 1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, Vortex-Induced Vibrations (VIVs) of a circular cylinder are analyzed as a potential source for energy harvesting. To this end, VIV is described by a one-degree-of-freedom model where fluid forces are introduced from experimental data from forced vibration tests. The influence of some influencing parameters, like the mass ratio m∗ or the mechanical damping ζ in the energy conversion factor is investigated. The analysis reveals that: (i) the maximum efficiency ηM is principally influenced by the mass-damping parameter m∗ζ and there is an optimum value of m∗ζ where ηM presents a maximum; (ii) the range of reduced velocities with significant efficiency is mainly governed by m∗, and (iii) it seems that encouraging high efficiency values can be achieved for high Reynolds numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the response of mechanical systems to external excitations, even in the simplest cases, involves solving second-order ordinary differential equations or systems thereof. Finding the natural frequencies of a system and understanding the effect of variations of the excitation frequencies on the response of the system are essential when designing mechanisms [1] and structures [2]. However, faced with the mathematical complexity of the problem, students tend to focus on the mathematical resolution rather than on the interpretation of the results. To overcome this difficulty, once the general theoretical problem and its solution through the state space [3] have been presented, Matlab®[4] and Simulink®[5] are used to simulate specific situations. Without them, the discussion of the effect of slight variations in input variables on the outcome of the model becomes burdensome due to the excessive calculation time required. Conversely, with the help of those simulation tools, students can easily reach practical conclusions and their evaluation can be based on their interpretation of results and not on their mathematical skills

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transverse galloping is a type of aeroelastic instability characterized by oscillations perpendicular to wind direction, large amplitude and low frequency, which appears in some elastic two-dimensional bluff bodies when they are subjected to an incident flow, provided that the flow velocity exceeds a threshold critical value. Understanding the galloping phenomenon of different cross-sectional geometries is important in a number of engineering applications: for energy harvesting applications the interest relies on strongly unstable configurations but in other cases the purpose is to avoid this type of aeroelastic phenomenon. In this paper the aim is to analyze the transverse galloping behavior of rhombic bodies to understand, on the one hand, the dependence of the instability with a geometrical parameter such as the relative thickness and, on the other hand, why this cross-section shape, that is generally unstable, shows a small range of relative thickness values where it is stable. Particularly, the non-galloping rhombus-shaped prism?s behavior is revised through wind tunnel experiments. The bodies are allowed to freely move perpendicularly to the incoming flow and the amplitude of movement and pressure distributions on the surfaces is measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of porosity on the transverse mechanical properties of unidirectional fiber-reinforced composites is studied by means of computational micromechanics. The composite behavior is simulated by the finite element analysis of a representative volume element of the composite microstructure in which the random distribution of fibers and the voids are explicitly included. Two types of voids – interfiber voids and matrix voids – were included in the microstructure and the actual damage mechanisms in the composite, namely matrix and interface failure, were accounted for. It was found that porosity (in the range 1–5%) led to a large reduction in the transverse strength and the influence of both types of voids in the onset and propagation of damage throughout the microstructure was studied under transverse tension and compression. Finally, the failure locus of the composite lamina under transverse tension/compression and out-of-plane shear was obtained by means of computational micromechanics and compared with the predictions of Puck’s model and with experimental data available in the literature. The results show that the strength of composites is significantly reduced by the presence of voids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo de investigación se ocupa del estudio de las vibraciones verticales inducidas por vórtices (VIV) en aquellos puentes que, por sus características geométricas y propiedades dinámicas, muestran cierta sensibilidad este tipo de fenómeno aeroelástico. El objeto principal es el análisis del mecanismo de interacción viento-estructura sobre secciones no fuseladas de geometría simple, con objeto de realizar una adecuada caracterización del problema y poder abordar posteriormente el análisis de otras secciones de geometría más compleja, representativas de los principales elementos estructurales de los puentes, como arcos, tableros, torres y pilas. Este aspecto es fundamental durante la fase de diseño del puente, donde deberán tenerse en cuenta también una serie de detalles que pueden influir significativamente su sensibilidad ante problemas aerodinámicos, como la morfología y dimensiones principales de la sección transversal del tablero, la disposición de barreras de seguridad y barreras cortaviento, o las riostras que unen diferentes elementos estructurales. La configuración de dos elementos en tándem o la construcción de un puente en las inmediaciones de otro existente son otros aspectos a considerar respecto a la sensibilidad frente a efectos aeroelásticos. El estudio se ha llevado a cabo principalmente mediante la implementación de simulaciones numéricas que reproducen la interacción entre la corriente de aire y secciones representativas de modelos estructurales, a partir de un código CFD basado en el método de las partículas de vórtices (VPM), siguiendo por tanto un esquema Lagrangiano. Los resultados han sido validados con datos experimentales existentes, valores procedentes de ensayos en túnel de viento y registros reales a partir de diferentes casos de estudio: Alconétar (2006), Niterói (1980), Trans- Tokyo Bay (1995) y Volgogrado (2010). Finalmente, se propone un modelo semi-empírico para la estimación del rango de velocidades críticas y amplitudes de oscilación basado en la utilización de las derivadas de flameo de Scanlan, y la densidad espectral de las fuerzas aerodinámicas en el dominio de la frecuencia. The present research work concerns the study of vertical vortex-induced vibrations (VIV) in bridges which show certain sensitivity to this type of aeroelastic phenomenon. It focuses on the analysis of the wind-structure interaction mechanism on bluff sections, with the objective of making a good characterisation of the problem and subsequently addressing the analysis of sections with a complex geometry, which are representative of the bridge structural elements, such as arches, decks, towers and piers. This issue is of relative importance during the bridge design phase, since minor details of the aforementioned elements can significantly influence its sensitivity to aerodynamic problems. The shape and main dimensions of the deck cross section, the addition of safety barriers and windshields, the presence of braces to enhance the structure mechanical properties, the utilisation of cross sections in tandem arrangement, or the erection of a new bridge in the vicinity of another existing one are some of the aspects to be considered regarding the sensitivity to the aeroelastic effects. The study has been carried out mainly through the implementation of numerical simulations that reproduces the interaction between the airflow and the representative cross section of a structural bridge model, by the use of a CFD code based on the vortex particle method (VPM), thus following a Lagrangian scheme. The results have been validated with existing experimental data, values from wind tunnel tests and full scale observations from the different case studies: Alconétar (2006), Niterói (1980), Trans-Tokyo Bay (1995) and Volgograd (2010). Finally, a new semi-empirical model is proposed for the estimation of the critical wind velocity ranges and oscillation amplitudes based on the use of the Scanlan’s flutter derivatives and the power spectral density of aerodynamic force time history in the frequency domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of transverse galloping of a square cylinder at low Reynolds numbers (Re≤200Re≤200, so that the flow is presumably laminar) is analysed. Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to fluid forces, which are described by using the quasi-steady hypothesis (time-averaged data are extracted from previous numerical simulations). Approximate solutions are obtained by means of the method of Krylov-Bogoliubov, with two major conclusions: (i) a square cylinder cannot gallop below a Reynolds number of 159 and (ii) in the range 159≤Re≤200159≤Re≤200 the response exhibits no hysteresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which are described by using the quasi-steady hypothesis. The hysteresis of transverse galloping is also analyzed. Approximate solutions of the model are obtained by assuming that the aerodynamic and damping forces are much smaller than the inertial and stiffness ones. The analysis of the approximate solution, which is obtained by means of the method of Krylov–Bogoliubov, reveals the existing link between the hysteresis phenomenon and the number of inflection points at the aerodynamic force coefficient curve, Cy(α)Cy(α); CyCy and αα being, respectively, the force coefficient normal to the incident flow and the angle of attack. The influence of the position of these inflection points on the range of flow velocities in which hysteresis takes place is also analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlation functions of the fluctuations of vibrational frequencies of azide ions and carbon monoxide in proteins are determined directly from stimulated photon echoes generated with femtosecond infrared pulses. The asymmetric stretching vibration of azide bound to carbonic anhydrase II exhibits a pronounced evolution of its vibrational frequency distribution on the time scale of a few picoseconds, which is attributed to modifications of the ligand structure through interactions with the nearby Thr-199. When azide is bound in hemoglobin, a more complex evolution of the protein structure is required to interchange the different ligand configurations, as evidenced by the much slower relaxation of the frequency distribution in this case. The time evolution of the distribution of frequencies of carbon monoxide bound in hemoglobin occurs on the ≈10-ps time scale and is very nonexponential. The correlation functions of the frequency fluctuations determine the evolution of the protein structure local to the probe and the extent to which the probe can navigate those parts of the energy landscape where the structural configurations are able to modify the local potential energy function of the probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2H,13C,15N-labeled, 148-residue integral membrane protein OmpX from Escherichia coli was reconstituted with dihexanoyl phosphatidylcholine (DHPC) in mixed micelles of molecular mass of about 60 kDa. Transverse relaxation-optimized spectroscopy (TROSY)-type triple resonance NMR experiments and TROSY-type nuclear Overhauser enhancement spectra were recorded in 2 mM aqueous solutions of these mixed micelles at pH 6.8 and 30°C. Complete sequence-specific NMR assignments for the polypeptide backbone thus have been obtained. The 13C chemical shifts and the nuclear Overhauser effect data then resulted in the identification of the regular secondary structure elements of OmpX/DHPC in solution and in the collection of an input of conformational constraints for the computation of the global fold of the protein. The same type of polypeptide backbone fold is observed in the presently determined solution structure and the previously reported crystal structure of OmpX determined in the presence of the detergent n-octyltetraoxyethylene. Further structure refinement will have to rely on the additional resonance assignment of partially or fully protonated amino acid side chains, but the present data already demonstrate that relaxation-optimized NMR techniques open novel avenues for studies of structure and function of integral membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In both humans and animals, the hippocampus is critical to memory across modalities of information (e.g., spatial and nonspatial memory) and plays a critical role in the organization and flexible expression of memories. Recent studies have advanced our understanding of cellular basis of hippocampal function, showing that N-methyl-d-aspartate (NMDA) receptors in area CA1 are required in both the spatial and nonspatial domains of learning. Here we examined whether CA1 NMDA receptors are specifically required for the acquisition and flexible expression of nonspatial memory. Mice lacking CA1 NMDA receptors were impaired in solving a transverse patterning problem that required the simultaneous acquisition of three overlapping odor discriminations, and their impairment was related to an abnormal strategy by which they failed to adequately sample and compare the critical odor stimuli. By contrast, they performed normally, and used normal stimulus sampling strategies, in the concurrent learning of three nonoverlapping concurrent odor discriminations. These results suggest that CA1 NMDA receptors play a crucial role in the encoding and flexible expression of stimulus relations in nonspatial memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the mechanical origin of auditory-nerve excitation, focusing on comparisons of the magnitudes and phases of basilar-membrane (BM) vibrations and auditory-nerve fiber responses to tones at a basal site of the chinchilla cochlea with characteristic frequency ≈ 9 kHz located 3.5 mm from the oval window. At this location, characteristic frequency thresholds of fibers with high spontaneous activity correspond to magnitudes of BM displacement or velocity in the order of 1 nm or 50 μm/s. Over a wide range of stimulus frequencies, neural thresholds are not determined solely by BM displacement but rather by a function of both displacement and velocity. Near-threshold, auditory-nerve responses to low-frequency tones are synchronous with peak BM velocity toward scala tympani but at 80–90 dB sound pressure level (in decibels relative to 20 microPascals) and at 100–110 dB sound pressure level responses undergo two large phase shifts approaching 180°. These drastic phase changes have no counterparts in BM vibrations. Thus, although at threshold levels the encoding of BM vibrations into spike trains appears to involve only relatively minor signal transformations, the polarity of auditory-nerve responses does not conform with traditional views of how BM vibrations are transmitted to the inner hair cells. The response polarity at threshold levels, as well as the intensity-dependent phase changes, apparently reflect micromechanical interactions between the organ of Corti, the tectorial membrane and the subtectorial fluid, and/or electrical and synaptic processes at the inner hair cells.