983 resultados para Topic modeling
Resumo:
Analyzing and redesigning business processes is a complex task, which requires the collaboration of multiple actors. Current approaches focus on collaborative modeling workshops where process stakeholders verbally contribute their perspective on a process while modeling experts translate their contributions and integrate them into a model using traditional input devices. Limiting participants to verbal contributions not only affects the outcome of collaboration but also collaboration itself. We created CubeBPM – a system that allows groups of actors to interact with process models through a touch based interface on a large interactive touch display wall. We are currently in the process of conducting a study that aims at assessing the impact of CubeBPM on collaboration and modeling performance. Initial results presented in this paper indicate that the setting helped participants to become more active in collaboration.
Resumo:
Analyzing and redesigning business processes is a complex task, which requires the collaboration of multiple actors. Current approaches focus on workshops where process stakeholders together with modeling experts create a graphical visualization of a process in a model. Within these workshops, stakeholders are mostly limited to verbal contributions, which are integrated into a process model by a modeling expert using traditional input devices. This limitation negatively affects the collaboration outcome and also the perception of the collaboration itself. In order to overcome this problem we created CubeBPM – a system that allows groups of actors to interact with process models through a touch based interface on a large interactive touch display wall. Using this system for collaborative modeling, we expect to provide a more effective collaboration environment thus improving modeling performance and collaboration.
Resumo:
In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.
Resumo:
The mesoscale simulation of a lamellar mesophase based on a free energy functional is examined with the objective of determining the relationship between the parameters in the model and molecular parameters. Attention is restricted to a symmetric lamellar phase with equal volumes of hydrophilic and hydrophobic components. Apart from the lamellar spacing, there are two parameters in the free energy functional. One of the parameters, r, determines the sharpness of the interface, and it is shown how this parameter can be obtained from the interface profile in a molecular simulation. The other parameter, A, provides an energy scale. Analytical expressions are derived to relate these parameters to r and A to the bending and compression moduli and the permeation constant in the macroscopic equation to the Onsager coefficient in the concentration diffusion equation. The linear hydrodynamic response predicted by the theory is verified by carrying out a mesoscale simulation using the lattice-Boltzmann technique and verifying that the analytical predictions are in agreement with simulation results. A macroscale model based on the layer thickness field and the layer normal field is proposed, and the relationship between the parameters in the macroscale model from the parameters in the mesoscale free energy functional is obtained.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved i interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
Introduction Two symposia on “cardiovascular diseases and vulnerable plaques” Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening. Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.
Resumo:
A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.
Resumo:
A desalination system is a complex multi energy domain system comprising power/energy flow across several domains such as electrical, thermal, and hydraulic. The dynamic modeling of a desalination system that comprehensively addresses all these multi energy domains is not adequately addressed in the literature. This paper proposes to address the issue of modeling the various energy domains for the case of a single stage flash evaporation desalination system. This paper presents a detailed bond graph modeling of a desalination unit with seamless integration of the power flow across electrical, thermal, and hydraulic domains. The paper further proposes a performance index function that leads to the tracking of the optimal chamber pressure giving the optimal flow rate for a given unit of energy expended. The model has been validated in steady state conditions by simulation and experimentation.
Resumo:
The precise timing of individual signals in response to those of signaling neighbors is seen in many animal species. Synchrony is the most striking of the resultant timing patterns. One of the best examples of acoustic synchrony is in katydid choruses where males produce chirps with a high degree of temporal overlap. Cooperative hypotheses that speculate on the evolutionary origins of acousti synchrony include the preservation of the species-specific call pattern, reduced predation risks, and increased call intensity. An alternative suggestion is that synchrony evolved as an epiphenomenon of competition between males in response to a female preference for chirps that lead other chirps. Previous models investigating the evolutionary origins of synchrony focused only on intrasexual competitive interactions. We investigated both competitive and cooperative hypotheses for the evolution of synchrony in the katydid Mecopoda ``Chirper'' using physiologically and ecologically realistic simulation models incorporating the natural variation in call features, ecology, female preferences, and spacing patterns, specifically aggregation. We found that although a female preference for leading chirps enables synchronous males to have some selective advantage, it is the female preference for the increased intensity of aggregations of synchronous males that enables synchrony to evolve as an evolutionarily stable strategy.
Resumo:
A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.
Resumo:
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g-1 up to beginning of seed growth, and then it declined linearly to 30 mg g-1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g-1. Stem [N] decreased from 30 mg g-1 early in the season to 8 mg g-1 in senesced stems at maturity. Pod [N] was constant (35 mg g-1), but grain [N] decreased from 60 mg g-1 early in seed growth to 43 mg g-1 at maturity. Total N accumulation ranged between 9 and 30 g m-2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g-1 where total biomass was -2 and during early growth period, but it decreased to 0.0176 g g-1 during the later growth period when total biomass was >218 g m-2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37-72% of leaf N and 12-56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.
Resumo:
A new approach is proposed to solve for the growth as well as the movement of hydrogen bubbles during solidification in aluminum castings. A level-set methodology has been adopted to handle this multiphase phenomenon. A microscale domain is considered and the growth and movement of hydrogen bubbles in this domain has been studied. The growth characteristics of hydrogen bubbles have been evaluated under free growth conditions in a melt having a hydrogen input caused b solidification occurring around the microdomain.
Resumo:
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid-solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading-unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 10(6) for stress-free temperature-induced transformation and 10(4) for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress-strain hysteresis loop is observed for mechanical loading with higher rates.
Resumo:
Theories of search and search behavior can be used to glean insights and generate hypotheses about how people interact with retrieval systems. This paper examines three such theories, the long standing Information Foraging Theory, along with the more recently proposed Search Economic Theory and the Interactive Probability Ranking Principle. Our goal is to develop a model for ad-hoc topic retrieval using each approach, all within a common framework, in order to (1) determine what predictions each approach makes about search behavior, and (2) show the relationships, equivalences and differences between the approaches. While each approach takes a different perspective on modeling searcher interactions, we show that under certain assumptions, they lead to similar hypotheses regarding search behavior. Moreover, we show that the models are complementary to each other, but operate at different levels (i.e., sessions, patches and situations). We further show how the differences between the approaches lead to new insights into the theories and new models. This contribution will not only lead to further theoretical developments, but also enables practitioners to employ one of the three equivalent models depending on the data available.