931 resultados para Spatial conditional autoregressive model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research seeks to design and implement a WebGIS application allowing high school students to work with information related to the disciplinary competencies of the competency-teaching model, in Mexico. This paradigm assumes knowledge to be acquired through the application of new technologies and to link it with everyday life situations of students. The WebGIS provides access to maps regarding natural risks in Mexico, e.g. volcanism, seismic activities, or hurricanes; the prototype's user interface was designed with special emphasis on scholar needs for high school students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO2 levels, by using geostatisti- cal approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This method- ology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses empirically the importance of size discrimination and disaggregate data for deciding where to locate a start-up concern. We compare three econometric specifications using Catalan data: a multinomial logit with 4 and 41 alternatives (provinces and comarques, respectively) in which firm size is the main covariate; a conditional logit with 4 and 41 alternatives including attributes of the sites as well as size-site interactions; and a Poisson model on the comarques and the full spatial choice set (942 municipalities) with site-specific variables. Our results suggest that if these two issues are ignored, conclusions may be misleading. We provide evidence that large and small firms behave differently and conclude that Catalan firms tend to choose between comarques rather than between municipalities. Moreover, labour-intensive firms seem more likely to be located in the city of Barcelona. Keywords: Catalonia, industrial location, multinomial response model. JEL: C250, E30, R00, R12

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines competition in a spatial model of two-candidate elections, where one candidate enjoys a quality advantage over the other candidate. The candidates care about winning and also have policy preferences. There is two-dimensional private information. Candidate ideal points as well as their tradeoffs between policy preferences and winning are private information. The distribution of this two-dimensional type is common knowledge. The location of the median voter's ideal point is uncertain, with a distribution that is commonly known by both candidates. Pure strategy equilibria always exist in this model. We characterize the effects of increased uncertainty about the median voter, the effect of candidate policy preferences, and the effects of changes in the distribution of private information. We prove that the distribution of candidate policies approaches the mixed equilibrium of Aragones and Palfrey (2002a), when both candidates' weights on policy preferences go to zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : Auditory spatial functions are of crucial importance in everyday life. Determining the origin of sound sources in space plays a key role in a variety of tasks including orientation of attention, disentangling of complex acoustic patterns reaching our ears in noisy environments. Following brain damage, auditory spatial processing can be disrupted, resulting in severe handicaps. Complaints of patients with sound localization deficits include the inability to locate their crying child or being over-loaded by sounds in crowded public places. Yet, the brain bears a large capacity for reorganization following damage and/or learning. This phenomenon is referred as plasticity and is believed to underlie post-lesional functional recovery as well as learning-induced improvement. The aim of this thesis was to investigate the organization and plasticity of different aspects of auditory spatial functions. Overall, we report the outcomes of three studies: In the study entitled "Learning-induced plasticity in auditory spatial representations" (Spierer et al., 2007b), we focused on the neurophysiological and behavioral changes induced by auditory spatial training in healthy subjects. We found that relatively brief auditory spatial discrimination training improves performance and modifies the cortical representation of the trained sound locations, suggesting that cortical auditory representations of space are dynamic and subject to rapid reorganization. In the same study, we tested the generalization and persistence of training effects over time, as these are two determining factors in the development of neurorehabilitative intervention. In "The path to success in auditory spatial discrimination" (Spierer et al., 2007c), we investigated the neurophysiological correlates of successful spatial discrimination and contribute to the modeling of the anatomo-functional organization of auditory spatial processing in healthy subjects. We showed that discrimination accuracy depends on superior temporal plane (STP) activity in response to the first sound of a pair of stimuli. Our data support a model wherein refinement of spatial representations occurs within the STP and that interactions with parietal structures allow for transformations into coordinate frames that are required for higher-order computations including absolute localization of sound sources. In "Extinction of auditory stimuli in hemineglect: space versus ear" (Spierer et al., 2007a), we investigated auditory attentional deficits in brain-damaged patients. This work provides insight into the auditory neglect syndrome and its relation with neglect symptoms within the visual modality. Apart from contributing to a basic understanding of the cortical mechanisms underlying auditory spatial functions, the outcomes of the studies also contribute to develop neurorehabilitation strategies, which are currently being tested in clinical populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.