992 resultados para Soil Contamination
Resumo:
Purpose: To evaluate the influence of cleaning procedures (pumice, anionic detergent and both procedures together) on the tensile bond strength of etch-and-rinse and self-etch adhesive systems to bovine enamel and dentin in vitro. Methods: Eighty non-carious, bovine incisors were extracted, embedded in acrylic resin to obtain enamel/dentin specimens. Flat bonding surfaces were obtained by grinding. Groups were divided according to substrate (enamel or dentin), adhesive system [etch-and-rinse, Adper Single Bond 2 (SB) or self-etch, Clearfil Protect Bond (PB)]; and cleaning substances (pumice, anionic detergent and their combination). The teeth were randomly divided into 20 groups (n=8): G1 - Enamel (E) + SB; G2 -E + oil (O) + SB; G3 - E + O + Pumice (P) + SB; G4 - E + O + Tergentol (T) + SB; G5 - E + O + P + T + SB; G6 - E + PB; G7 - E + O + PB; G8 - E + O + P + PB; G9 - E + O + T + PB; GIO - E + O + P + T + PB; G11 - Dentin (D) + SB; G12 D + SB + O; G13 - D + SB + O + P; G14 - D + SB + O + T; G15 - D + SB + O + P + T; G16 - D + PB; G17 - D + O + PB +; G18 - D + O + P + PB; G19 - D + O + T + PB; G20 - D + O + P + T + PB. Specimens were contaminated with handpiece oil for 5 seconds before bonding. Adhesive systems and resin composite were applied according to manufacturers` instructions. Specimens were tested in tension after 24 hours of immersion using a universal testing machine at a crosshead speed of 0.5 mm/minute. Bond strengths were analyzed with ANOVA. Failure sites were observed and recorded. Results: Tensile bond strength in MPa were: G1 (23.6 +/- 0.9); G2 (17.3 +/- 2.2); G3 (20.9 +/- 0.9); G4 (20.6 +/- 0.5); G5 (18.7 +/- 2.3); G6 (23.0 +/- 1.0); G7 (21.5 +/- 2.4); G8 (19.9 +/- 1.3); G9 (22.1 +/- 1.2); G10 (19.1 +/- 1.2); G11 (18.8 +/- 1.3); G12 (15.7 +/- 2.1); G13 (17.8 +/- 3.3); G14 (15.3 +/- 2.9); G15 (15.6 +/- 1.9); G16 (14.7 +/- 2.3); G17 (5.5 +/- 0.9); G18 (19.3 +/- 1.8); G19 (15.6 +/- 1.6); G20 (20.3 +/- 3.9). Statistical analysis showed that the main factors substrate and cleaning were statistically significant, as well as the triple interaction between factors of variance. However, the factor adhesive system did not show statistical difference. Oil contamination reduced bond strengths, being less detrimental to enamel than to dentin. Etch-and-rinse (SB) and two-step self-etch (PB) systems had similar bond strengths in the presence of oil contamination. For etch-and-rinse (SB), the cleaning procedures were able to clean enamel, but dentin was better cleaned by pumice. When self-etch (PB) system was used on enamel, anionic detergent was the best cleaning substance, while on dentin the tested procedures were similarly efficient.
Resumo:
Staphylococcus aureus strains can be disseminated during dental treatment and occasionally lead to contamination and infection of patients and dentists. The objective of this study was to determine the frequency and compare the number of S.aureus colonies isolated from the nose, hands and tongue of students and patients, as well as from the clinical environment, before and after dental treatment. Staphylococcus species were isolated from the tongue, nose and hands of 30 students and 30 patients and from the environment of a Pediatric Dentistry Clinic. The samples were incubated in SMA plates at 37 degrees C for 48 hours. Results: The colonies that showed the presence of mannitol fermentation were collected as identification for Staphylococcus aureus, using CHROMagar and the coagulase test. The highest amount of S.aureus was found in the nose and tongue of children. In relation to dental students, more contamination was observed on gloved hands, followed by the tongue and hands without gloves, before clinical attendance. At the end of dental treatment, S. aureus colonies isolated from the gloved hands of students decreased significantly. Considering the clinical environment, the most contaminated areas were the auxiliary table and the storeroom, which was located at the center of the clinic. Conclusion: The dental clinic can be considered an environment for S. aureus cross-transmission. Preventative measures should be used to avoid the dissemination of pathogenic microorganisms.
Resumo:
A survey was performed to estimate the frequency of Escherichia coli and Shiga toxin-producing E. coli (STEC) in carcasses obtained from an abattoir in Brazil between February 2006 and June 2007. A total of 216 beef carcasses were sampled at three stages of the slaughter process-preevisceration, postevisceration, and postprocessing-during the rain and dry seasons, respectively. Of the carcasses sampled, 58%, were preevisceration E. coli positive, 38% were postevisceration positive, and 32% postprocessing positive. At the postprocessing stage, the isolation of E. coli was twice as high in the rain season. E. coli was isolated from 85 carcasses of which only 3 (1.4%) were positive for stx-encoding genes. No E. coli O157 serogroup isolates were detected. No antimicrobial resistance was found in nine of the isolates (10% of the total). The most frequent resistances were seen against cephalothin (78%), streptomycin (38%), nalidixic acid (36%), and tetracycline (30%). Multidrug resistance (MDR) to three or more antimicrobial agents was determined in 28 (33%) E. coli isolates. The presence of STEC and MDR strains among the isolates in the beef carcasses emphasizes the importance of proper handling to prevent carcass contamination.
Resumo:
Recent studies have demonstrated the occurrence of elevated levels of higher chlorinated PCDDs in the coastal environment of Queensland, Australia. This study presents new data for OCDD contamination and full PCDD/F profile analysis in the environment of Queensland. Marine sediments, irrigation drain sediments and topsoil were collected from sites that were expected to be influenced by specific land-use types. High OCDD concentrations were associated mainly with sediments collected near the mouth of rivers which drain into large catchments in the tropical and subtropical regions. Further, analysis of sediments from irrigation drains could be clearly differentiated on the basis of OCDD contamination, with high concentrations in samples from sugarcane drains collected from coastal regions, and low concentrations in drain sediments from drier inland cotton growing areas. PCDD/F congener-specific analysis demonstrated almost identical congener profiles in all samples collected along the coastline. This indicates the source to be widespread. Profiles were dominated by higher chlorinated PCDDs, in particular OCDD whereas 2,3,7,8-substituted PCDFs were below the limit of quantification in the majority of samples. The full PCDD/F profile analysis of samples strongly resemble those reported for lake sediments from Mississippi and kaolinite samples from Germany, Strong similarities to these samples with respect to congener profiles and isomer patterns may indicate the presence of a similar source and/or formation process that is yet unidentified. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dairy pasture in the absence of grazing animals. A nitrogen balance was conducted in cylindrical plots with N-15-labelled urea, and ammonia volatilisation was determined using a mass balance micrometeorological method. The pasture plants took up 42% of the applied nitrogen in the 98 days between fertiliser application and harvest. At harvest 18% of the applied nitrogen was found in the soil, and 40% was lost from the plant-soil system. The micrometeorological study showed that 20% of the unrecovered nitrogen was lost by ammonia volatilisation. As there was no evidence for leaching or runoff losses it was concluded that the remaining 20% of the applied nitrogen was lost by denitrification. It is evident from these results that fertiliser nitrogen is not being used efficiently on dairy pastures, and that practices need to be changed to conserve fertiliser nitrogen and reduce contamination of the environment.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.