929 resultados para Small-signal stability
Resumo:
The thermal and chemical stabilities of Mo/Si multilayer structure used in Bragg-Fresnel optics were studied to get optimal technological parameters of pattern generation. Mo/Si multilayers were annealed at temperature ranging from 360 to 770 K, treated with acetone and 5 parts per thousand NaOH solution, and characterized by small-angle x-ray diffraction technique as well as x-ray photoelectron spectroscopy, and Olympus microscopy.
Resumo:
The Electrochemical stability of poly(3-methylthiophene) (PMT) thin film modified glassy carbon electrodes was investigated experimentally with successive cyclic voltammetry(CV) The effects of electrolyte solutions on the stability were studied. In the presence of small hydrated anions (less-than-or-equal-to 3.5nm) in the solution, the electroactivity of PMT films decreased with the characteristics of second order kinetics. In a solution with large hydrated anions (greater-than-or-equal-to 4 nm), PMT films have good stability. PMT/GO electrode can electrocatalyse the oxidation of Br- and Cl- anions, and loses its electroactivity rapidly. X-ray photoelectron spectra (XPS) have demonstrated that chlorine has bonded covalently onto the PMT structure after OV cycles in NaCl solutions.
Resumo:
Cream liqueurs manufactured by a one-step process, where alcohol was added before homogenisation, were more stable than those processed by a two -step process which involved addition of alcohol after homogenisation. Using the one-step process, it was possible to produce creaming-stable liqueurs by using one pass through a homogeniser (27.6 MPa) equipped with "liquid whirl" valves. Test procedures to characterise cream liqueurs and to predict shelf life were studied in detail. A turbidity test proved simple, rapid and sensitive for characterising particle size and homogenisation efficiency. Prediction of age thickening/gelation in cream liqueurs during incubation at 45 °C depended on the age of the sample when incubated. Samples that gelled at 45 °C may not do so at ambient temperature. Commercial cream liqueurs were similar in gross chemical composition, and unlike experimentally produced liqueurs, these did not exhibit either age-gelation at ambient or elevated temperatures. Solutions of commercial sodium caseinates from different sources varied in their calcium sensitivity. When incorporated into cream liqueurs, caseinates influenced the rate of viscosity increase, coalescence and, possibly, gelation during incubated storage. Mild heat and alcohol treatment modified the properties of caseinate used to stabilise non-alcoholic emulsions, while the presence of alcohol in emulsions was important in preventing clustering of globules. The response to added trisodium citrate varied. In many cases, addition of the recommended level (0.18%) did not prevent gelation. Addition of small amounts of NaOH with 0.18 % trisodium citrate before homogenisation was beneficial. The stage at which citrate was added during processing was critical to the degree of viscosity increase (as opposed to gelation) in the product during 45 °C incubation. The component responsible for age-gelation was present in the milk-solids non fat portion of the cream and variations in the creams used were important in the age-gelation phenomenon Results indicated that, in addition to possibly Ca++, the micellar casein portion of serum may play a role in gelation. The role of the low molecular weight surfactants, sodium stearoyl lactylate and monodiglycerides in preventing gelation, was influenced by the presence of trisodium citrate. Clustering of fat globules and age-gelation were inhibited when 0.18 % citrate was included. Inclusion of sodium stearoyl lactylate, but not monodiglycerides, reduced the extent of viscosity increase at 45 °C in citrate containing liqueurs.
Resumo:
Stimulation of a mutant angiotensin type 1A receptor (DRY/AAY) with angiotensin II (Ang II) or of a wild-type receptor with an Ang II analog ([sarcosine1,Ile4,Ile8]Ang II) fails to activate classical heterotrimeric G protein signaling but does lead to recruitment of beta-arrestin 2-GFP and activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (maximum stimulation approximately 50% of wild type). This G protein-independent activation of mitogen-activated protein kinase is abolished by depletion of cellular beta-arrestin 2 but is unaffected by the PKC inhibitor Ro-31-8425. In parallel, stimulation of the wild-type angiotensin type 1A receptor with Ang II robustly stimulates ERK1/2 activation with approximately 60% of the response blocked by the PKC inhibitor (G protein dependent) and the rest of the response blocked by depletion of cellular beta-arrestin 2 by small interfering RNA (beta-arrestin dependent). These findings imply the existence of independent G protein- and beta-arrestin 2-mediated pathways leading to ERK1/2 activation and the existence of distinct "active" conformations of a seven-membrane-spanning receptor coupled to each.
Resumo:
Before fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase.
Resumo:
This thesis reports advances in magnetic resonance imaging (MRI), with the ultimate goal of improving signal and contrast in biomedical applications. More specifically, novel MRI pulse sequences have been designed to characterize microstructure, enhance signal and contrast in tissue, and image functional processes. In this thesis, rat brain and red bone marrow images are acquired using iMQCs (intermolecular multiple quantum coherences) between spins that are 10 μm to 500 μm apart. As an important application, iMQCs images in different directions can be used for anisotropy mapping. We investigate tissue microstructure by analyzing anisotropy mapping. At the same time, we simulated images expected from rat brain without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Besides magnitude of iMQCs, phase of iMQCs should be studied as well. The phase anisotropy maps built by our method can clearly show susceptibility information in kidneys. It may provide meaningful diagnostic information. To deeply study susceptibility, the modified-crazed sequence is developed. Combining phase data of modified-crazed images and phase data of iMQCs images is very promising to construct microstructure maps. Obviously, the phase image in all above techniques needs to be highly-contrasted and clear. To achieve the goal, algorithm tools from Susceptibility-Weighted Imaging (SWI) and Susceptibility Tensor Imaging (STI) stands out superb useful and creative in our system.
Resumo:
For pt.I. see ibid. vol.1, p.301 (1985). In the first part of this work a general definition of an inverse problem with discrete data has been given and an analysis in terms of singular systems has been performed. The problem of the numerical stability of the solution, which in that paper was only briefly discussed, is the main topic of this second part. When the condition number of the problem is too large, a small error on the data can produce an extremely large error on the generalised solution, which therefore has no physical meaning. The authors review most of the methods which have been developed for overcoming this difficulty, including numerical filtering, Tikhonov regularisation, iterative methods, the Backus-Gilbert method and so on. Regularisation methods for the stable approximation of generalised solutions obtained through minimisation of suitable seminorms (C-generalised solutions), such as the method of Phillips (1962), are also considered.
Resumo:
An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].
Resumo:
During summer 2008 and spring 2009, surface oceanographic surveys were carried out around three islands of the Azores archipelago (Terceira, Sao Miguel and Santa Maria) to assess the phytoplankton distribution and associated physico-chemical processes. The Azores archipelago is a major feature in the biogeochemical North Atlantic Subtropical Gyre (NAST) province although its influence on the productivity of the surrounding ocean is poorly known. Surface phytoplankton was studied by microscopy and HPLC (High Precision Liquid Chromatography). The mean values for biomass proxy Chlorophyll a (Chla) ranged from 0.04 to 0.55 mu g L-1 (Chla maximum = 0.86 mu g L-1) and coccolithophores were the most abundant group, followed by small flagellates, Cyanobacteria, diatoms and dinoflagellates being the least abundant group. The distribution of phytoplankton and coccolithophore species in particular presented seasonal differences and was consistent with the nearshore influence of warm subtropical waters from the south Azores current and colder subpolar waters from the north. The satellite-derived circulation patterns showed southward cold water intrusions off Terceira and northward warm water intrusions off Santa Maria. The warmer waters signal was confirmed by the subtropical coccolithophore assemblage, being Discosphaera tubifera a constant presence under these conditions. The regions of enhanced biomass, either resulting from northern cooler waters or from island induced processes, were characterized by the presence of Emiliania huxleyi. Diatoms and dinoflagellates indicated coastal and regional processes of nutrient enrichment and areas of physical stability, respectively.
Resumo:
Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species.
An exploratory non-LTE model atmosphere analysis of B-type supergiants in the Small Magellanic Cloud
Resumo:
A preliminary differential non-LTE model atmosphere analysis of moderate resolution (R ~ 5 000) and signal-to-noise ratio spectra of 48 Small Magellanic Cloud B-type supergiants is presented. Standard techniques are adopted, viz. plane-parallel geometry and radiative and hydrostatic equilibrium. Spectroscopic atmospheric parameters (T_eff, log g and v_turb), luminosities and chemical abundances (He, C, N, O, Mg and Si) are estimated. These are compared with those deduced for a comparable sample of Galactic supergiants. The SMC targets appear to have similar atmospheric parameters, luminosities and helium abundances to the Galactic sample. Their magnesium and silicon underabundances are compatible with those found for main sequence SMC objects and there is no evidence for any large variation in their oxygen abundances. By contrast both their carbon and nitrogen lines strengths are inconsistent with single abundances, while their nitrogen to carbon abundance ratios appear to vary by at least as much and probably more than that found in the Galactic sample.
Resumo:
This paper evaluates the desirability of PPP rules vis-á-vis fixed exchange rates both in terms of welfare and stability properties. The analysis is conducted within a small open-economy New Keynesian framework extended to include a cost channel. In terms of stability, we find that while the equilibrium is always unique under fixed exchange rates its uniqueness critically depends upon the presence/absence of the cost channel under a PPP rule. Overall, then, in terms of welfare a fixed exchange rate always outperforms a PPP rule.
Resumo:
A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrodinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres. (c) 2006 American Institute of Physics.