952 resultados para Robust epipolar-geometry estimation
Resumo:
A new algorithm for the velocity vector estimation of moving ships using Single Look Complex (SLC) SAR data in strip map acquisition mode is proposed. The algorithm exploits both amplitude and phase information of the Doppler decompressed data spectrum, with the aim to estimate both the azimuth antenna pattern and the backscattering coefficient as function of the look angle. The antenna pattern estimation provides information about the target velocity; the backscattering coefficient can be used for vessel classification. The range velocity is retrieved in the slow time frequency domain by estimating the antenna pattern effects induced by the target motion, while the azimuth velocity is calculated by the estimated range velocity and the ship orientation. Finally, the algorithm is tested on simulated SAR SLC data.
Resumo:
This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.
Resumo:
This paper presents an ankle mounted Inertial Navigation System (INS) used to estimate the distance traveled by a pedestrian. This distance is estimated by the number of steps given by the user. The proposed method is based on force sensors to enhance the results obtained from an INS. Experimental results have shown that, depending on the step frequency, the traveled distance error varies between 2.7% and 5.6%.
Resumo:
This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.
Resumo:
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
Formula Student events gather engineering students, who compete, designing, building and racing single-seater cars. The team of ISEP is working on its first car that soon will take part in this competition. This work aims to analyze the current design’s chassis, focusing on suspension geometry and frame’s performance. After analyzing results of the tests planned suggestions, that can be taken into consideration during design process of next cars will be presented. As the car has not been tested yet this work can also be helpful to explain its performance on the track later.
Resumo:
Dissertação para obtenção do Grau de Mestre em Matemática e Aplicações Especialização em Actuariado, Estatística e Investigação Operacional
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Doutor em Gestão de Informação
Resumo:
Radio link quality estimation is essential for protocols and mechanisms such as routing, mobility management and localization, particularly for low-power wireless networks such as wireless sensor networks. Commodity Link Quality Estimators (LQEs), e.g. PRR, RNP, ETX, four-bit and RSSI, can only provide a partial characterization of links as they ignore several link properties such as channel quality and stability. In this paper, we propose F-LQE (Fuzzy Link Quality Estimator, a holistic metric that estimates link quality on the basis of four link quality properties—packet delivery, asymmetry, stability, and channel quality—that are expressed and combined using Fuzzy Logic. We demonstrate through an extensive experimental analysis that F-LQE is more reliable than existing estimators (e.g., PRR, WMEWMA, ETX, RNP, and four-bit) as it provides a finer grain link classification. It is also more stable as it has lower coefficient of variation of link estimates. Importantly, we evaluate the impact of F-LQE on the performance of tree routing, specifically the CTP (Collection Tree Protocol). For this purpose, we adapted F-LQE to build a new routing metric for CTP, which we dubbed as F-LQE/RM. Extensive experimental results obtained with state-of-the-art widely used test-beds show that F-LQE/RM improves significantly CTP routing performance over four-bit (the default LQE of CTP) and ETX (another popular LQE). F-LQE/RM improves the end-to-end packet delivery by up to 16%, reduces the number of packet retransmissions by up to 32%, reduces the Hop count by up to 4%, and improves the topology stability by up to 47%.
Resumo:
Astringency is an organoleptic property of beverages and food products resulting mainly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers, but the only effective way of measuring it involves trained sensorial panellists, providing subjective and expensive responses. Concurrent chemical evaluations try to screen food astringency, by means of polyphenol and protein precipitation procedures, but these are far from the real human astringency sensation where not all polyphenol–protein interactions lead to the occurrence of precipitate. Here, a novel chemical approach that tries to mimic protein–polyphenol interactions in the mouth is presented to evaluate astringency. A protein, acting as a salivary protein, is attached to a solid support to which the polyphenol binds (just as happens when drinking wine), with subsequent colour alteration that is fully independent from the occurrence of precipitate. Employing this simple concept, Bovine Serum Albumin (BSA) was selected as the model salivary protein and used to cover the surface of silica beads. Tannic Acid (TA), employed as the model polyphenol, was allowed to interact with the BSA on the silica support and its adsorption to the protein was detected by reaction with Fe(III) and subsequent colour development. Quantitative data of TA in the samples were extracted by colorimetric or reflectance studies over the solid materials. The analysis was done by taking a regular picture with a digital camera, opening the image file in common software and extracting the colour coordinates from HSL (Hue, Saturation, Lightness) and RGB (Red, Green, Blue) colour model systems; linear ranges were observed from 10.6 to 106.0 μmol L−1. The latter was based on the Kubelka–Munk response, showing a linear gain with concentrations from 0.3 to 10.5 μmol L−1. In either of these two approaches, semi-quantitative estimation of TA was enabled by direct eye comparison. The correlation between the levels of adsorbed TA and the astringency of beverages was tested by using the assay to check the astringency of wines and comparing these to the response of sensorial panellists. Results of the two methods correlated well. The proposed sensor has significant potential as a robust tool for the quantitative/semi-quantitative evaluation of astringency in wine.
Resumo:
This paper employs the Lyapunov direct method for the stability analysis of fractional order linear systems subject to input saturation. A new stability condition based on saturation function is adopted for estimating the domain of attraction via ellipsoid approach. To further improve this estimation, the auxiliary feedback is also supported by the concept of stability region. The advantages of the proposed method are twofold: (1) it is straightforward to handle the problem both in analysis and design because of using Lyapunov method, (2) the estimation leads to less conservative results. A numerical example illustrates the feasibility of the proposed method.
Resumo:
This paper reports investigation on the estimation of the short circuit impedance of power transformers, using fractional order calculus to analytically study the influence of the diffusion phenomena in the windings. The aim is to better characterize the medium frequency range behavior of leakage inductances of power transformer models, which include terms to represent the magnetic field diffusion process in the windings. Comparisons between calculated and measured values are shown and discussed.