948 resultados para Retina.
Resumo:
Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.
Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.
The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.
The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).
Resumo:
As the worldwide prevalence of diabetes mellitus continues to increase, diabetic retinopathy remains the leading cause of visual impairment and blindness in many developed countries. Between 32 to 40 percent of about 246 million people with diabetes develop diabetic retinopathy. Approximately 4.1 million American adults 40 years and older are affected by diabetic retinopathy. This glucose-induced microvascular disease progressively damages the tiny blood vessels that nourish the retina, the light-sensitive tissue at the back of the eye, leading to retinal ischemia (i.e., inadequate blood flow), retinal hypoxia (i.e., oxygen deprivation), and retinal nerve cell degeneration or death. It is a most serious sight-threatening complication of diabetes, resulting in significant irreversible vision loss, and even total blindness.
Unfortunately, although current treatments of diabetic retinopathy (i.e., laser therapy, vitrectomy surgery and anti-VEGF therapy) can reduce vision loss, they only slow down but cannot stop the degradation of the retina. Patients require repeated treatment to protect their sight. The current treatments also have significant drawbacks. Laser therapy is focused on preserving the macula, the area of the retina that is responsible for sharp, clear, central vision, by sacrificing the peripheral retina since there is only limited oxygen supply. Therefore, laser therapy results in a constricted peripheral visual field, reduced color vision, delayed dark adaptation, and weakened night vision. Vitrectomy surgery increases the risk of neovascular glaucoma, another devastating ocular disease, characterized by the proliferation of fibrovascular tissue in the anterior chamber angle. Anti-VEGF agents have potential adverse effects, and currently there is insufficient evidence to recommend their routine use.
In this work, for the first time, a paradigm shift in the treatment of diabetic retinopathy is proposed: providing localized, supplemental oxygen to the ischemic tissue via an implantable MEMS device. The retinal architecture (e.g., thickness, cell densities, layered structure, etc.) of the rabbit eye exposed to ischemic hypoxic injuries was well preserved after targeted oxygen delivery to the hypoxic tissue, showing that the use of an external source of oxygen could improve the retinal oxygenation and prevent the progression of the ischemic cascade.
The proposed MEMS device transports oxygen from an oxygen-rich space to the oxygen-deficient vitreous, the gel-like fluid that fills the inside of the eye, and then to the ischemic retina. This oxygen transport process is purely passive and completely driven by the gradient of oxygen partial pressure (pO2). Two types of devices were designed. For the first type, the oxygen-rich space is underneath the conjunctiva, a membrane covering the sclera (white part of the eye), beneath the eyelids and highly permeable to oxygen in the atmosphere when the eye is open. Therefore, sub-conjunctival pO2 is very high during the daytime. For the second type, the oxygen-rich space is inside the device since pure oxygen is needle-injected into the device on a regular basis.
To prevent too fast or too slow permeation of oxygen through the device that is made of parylene and silicone (two widely used biocompatible polymers in medical devices), the material properties of the hybrid parylene/silicone were investigated, including mechanical behaviors, permeation rates, and adhesive forces. Then the thicknesses of parylene and silicone became important design parameters that were fine-tuned to reach the optimal oxygen permeation rate.
The passive MEMS oxygen transporter devices were designed, built, and tested in both bench-top artificial eye models and in-vitro porcine cadaver eyes. The 3D unsteady saccade-induced laminar flow of water inside the eye model was modeled by computational fluid dynamics to study the convective transport of oxygen inside the eye induced by saccade (rapid eye movement). The saccade-enhanced transport effect was also demonstrated experimentally. Acute in-vivo animal experiments were performed in rabbits and dogs to verify the surgical procedure and the device functionality. Various hypotheses were confirmed both experimentally and computationally, suggesting that both the two types of devices are very promising to cure diabetic retinopathy. The chronic implantation of devices in ischemic dog eyes is still underway.
The proposed MEMS oxygen transporter devices can be also applied to treat other ocular and systemic diseases accompanied by retinal ischemia, such as central retinal artery occlusion, carotid artery disease, and some form of glaucoma.
Resumo:
A study of human eye movements was made in order to elucidate the nature of the control mechanism in the binocular oculomotor system.
We first examined spontaneous eye movements during monocular and binocular fixation in order to determine the corrective roles of flicks and drifts. It was found that both types of motion correct fixational errors, although flicks are somewhat more active in this respect. Vergence error is a stimulus for correction by drifts but not by flicks, while binocular vertical discrepancy of the visual axes does not trigger corrective movements.
Second, we investigated the non-linearities of the oculomotor system by examining the eye movement responses to point targets moving in two dimensions in a subjectively unpredictable manner. Such motions consisted of hand-limited Gaussian random motion and also of the sum of several non-integrally related sinusoids. We found that there is no direct relationship between the phase and the gain of the oculomotor system. Delay of eye movements relative to target motion is determined by the necessity of generating a minimum afferent (input) signal at the retina in order to trigger corrective eye movements. The amplitude of the response is a function of the biological constraints of the efferent (output) portion of the system: for target motions of narrow bandwidth, the system responds preferentially to the highest frequency; for large bandwidth motions, the system distributes the available energy equally over all frequencies. Third, the power spectra of spontaneous eye movements were compared with the spectra of tracking eye movements for Gaussian random target motions of varying bandwidths. It was found that there is essentially no difference among the various curves. The oculomotor system tracks a target, not by increasing the mean rate of impulses along the motoneurons of the extra-ocular muscles, but rather by coordinating those spontaneous impulses which propagate along the motoneurons during stationary fixation. Thus, the system operates at full output at all times.
Fourth, we examined the relative magnitude and phase of motions of the left and the right visual axes during monocular and binocular viewing. We found that the two visual axes move vertically in perfect synchronization at all frequencies for any viewing condition. This is not true for horizontal motions: the amount of vergence noise is highest for stationary fixation and diminishes for tracking tasks as the bandwidth of the target motion increases. Furthermore, movements of the occluded eye are larger than those of the seeing eye in monocular viewing. This effect is more pronounced for horizontal motions, for stationary fixation, and for lower frequencies.
Finally, we have related our findings to previously known facts about the pertinent nerve pathways in order to postulate a model for the neurological binocular control of the visual axes.
Resumo:
Spreading depression (SD) is a phenomenon observed in several sections of vertebrate central nervous system. It can occur spontaneously or be evoked by a variety of stimuli, and consists of a wave of depression of the normal electrical activity of the nervous tissue which spreads slowly in all directions in the tissue. This wave of depression is accompanied by several concomitants including ion movements. All the concomitants of SD can be explained by an increase in the sodium permeability of the plasma membranes of cellular elements involved in this phenomenon.
In the chicken retina, SD is accompanied by a transparency change which can be detected with the naked eye. The isolated retina is a thin (0.1 mm) membrane in which the extracellular fluid quickly and completely equilibrates with the incubation solutions. This preparation was therefore used to study the ion movements during SD by measuring and comparing the ion contents and the extracellular space (ECS) of retinas incubated in various solutions of which some inhibited SD, whereas others allowed this phenomenon to occur.
The present study has shown that during SD there is a shift of extracellular sodium into the intracellular compartment of the retina, a release of intracellular K and a decrease in the magnitude of ECS. These results are in agreement with previous postulates about SD, although the in vitro experimental condition makes the ion movements appear larger and the loss of ECS smaller than observed in the intact cortical tissue. The movements of Na and K, in opposite directions, are reversible. The development and magnitudes of SD is very little affected by deprivation of the oxygen supply.
It was established that the inward sodium shift is not a consequence of an arrest of the Na-pump. It can be prevented, together with SD by the membrane stabilizers, magnesium and procaine. Spreading depression and the ion movements are incompletely inhibited by tetrodotoxin, which blocks the sodium influx into nerve fibers during the action potential. The replacement of Na in the bathing solution by Li does not prevent SD, which is accompanied by Li accumulation in the intracellular compartment. From these experiments and others it was concluded that the mechanism underlying SD and the ion shifts is an increase in the sodium permeability of cell membranes.
Resumo:
134 p.
Resumo:
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids (omega-3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and omega-3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of omega-3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and omega-3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Resumo:
Purpose Retinal ganglion cells (RGCs) are exposed to injury in a variety of optic nerve diseases including glaucoma. However, not all cells respond in the same way to damage and the capacity of individual RGCs to survive or regenerate is variable. In order to elucidate factors that may be important for RGC survival and regeneration we have focussed on the extracellular matrix (ECM) and RGC integrin expression. Our specific questions were: (1) Do adult RGCs express particular sets of integrins in vitro and in vivo? (2) Can the nature of the ECM influence the expression of different integrins? (3) Can the nature of the ECM affect the survival of the cells and the length or branching complexity of their neurites? Methods Primary RGC cultures from adult rat retina were placed on glass coverslips treated with different substrates: Poly-L-Lysine (PL), or PL plus laminin (L), collagen I (CI), collagen IV (CIV) or fibronectin (F). After 10 days in culture, we performed double immunostaining with an antibody against beta III-Tubulin to identify the RGCs, and antibodies against the integrin subunits: alpha V, alpha 1, alpha 3, alpha 5, beta 1 or beta 3. The number of adhering and surviving cells, the number and length of the neurites and the expression of the integrin subunits on the different substrates were analysed. Results PL and L were associated with the greatest survival of RGCs while CI provided the least favourable conditions. The type of substrate affected the number and length of neurites. L stimulated the longest growth. We found at least three different types of RGCs in terms of their capacity to regenerate and extend neurites. The different combinations of integrins expressed by the cells growing on different substrata suggest that RGCs expressed predominantly alpha 1 beta 1 or alpha 3 beta 1 on L, alpha 1 beta 1 on CI and CIV, and alpha 5 beta 3 on F. The activity of the integrins was demonstrated by the phosphorylation of focal adhesion kinase (FAK). Conclusions Adult rat RGCs can survive and grow in the presence of different ECM tested. Further studies should be done to elucidate the different molecular characteristics of the RGCs subtypes in order to understand the possible different sensitivity of different RGCs to damage in diseases like glaucoma in which not all RGCs die at the same time.
Resumo:
A Neuropatia autonômica cardiovascular (NAC), apesar de ter sido apontada como fator de risco independente para doença cardiovascular (DCV) em pacientes com diabetes tipo 1 (DM1), permanece subdiagnosticada. Os objetivos do trababalho foram determinar a prevalência de NAC e seus indicadores clínicos e laboratoriais em pacientes com DM1 e a associação com outras complicações crônicas do diabetes, além de avaliar a concordância entre os critérios diagnósticos da NAC determinados pelos parâmetros da análise espectral e pelos testes reflexos cardiovasculares. Pacientes com DM1, duração da doença ≥ 5 anos e com idade ≥ 13 anos foram submetidos a um questionário clínico-epidemiológico, a coleta de sangue e de urina para determinação da concentração urinária de albumina, ao mapeamento de retina, e exame clínico para pesquisa de neuropatia diabética sensitivo motora além da realização de testes reflexos cardiovasculares. Cento e cinquenta e um pacientes com DM1, 53.6 % do sexo feminino, 45.7% brancos, com média de idade de 33.4 13 anos, idade ao diagnóstico de 17.2 9.8 anos, duração de DM1 de 16.3 9.5 anos, índice de massa corporal (IMC) de 23.4 (13.7-37.9) Kg/m2 e níveis de hemoglobina glicada de 9.1 2% foram avaliados. Após realização dos testes para rastreamento das complicações microvasculares, encontramos neuropatia diabética sensitivo motora, retinopatia diabética, nefropatia diabética e NAC em 44 (29.1%), 54 (38%), 35 (24.1%) e 46 (30.5%) dos pacientes avaliados, respectivamente. A presença de NAC foi associada com idade (p=0.01), duração do DM (p=0.036), HAS (p=0.001), frequência cardíaca em repouso (p=0.000), HbA1c (p=0.048), uréia (p=0.000), creatinina (p=0.008), taxa de filtração glomerular (p=0.000), concentração urinária de albumina (p=0.000), níveis séricos de LDL-colesterol (p=0.048), T4 livre (p=0.023) e hemoglobina (p=0.01) e a presença de retinopatia (p=0.000), nefropatia (p=0.000) e neuropatia diabética sensitivo motora (p=0.000), além dos seguintes sintomas; lipotimia (p=0.000), náuseas pós alimentares (p=0.042), saciedade precoce (p=0.031), disfunção sexual (p=0.049) e sudorese gustatória (p=0.018). No modelo de regressão logística binária, avaliando o diagnóstico de NAC como variável dependente, foi observado que apenas a FC em repouso, presença de neuropatia diabética sensitivo motora e retinopatia diabética foram consideradas variáveis independentes significativamente. A NAC é uma complicação crônica comum do DM1, atingindo cerca de 30% dos pacientes estudados e encontra-se associada à presença de outras complicações da doença. Indicadores da presença de NAC nos pacientes avaliados incluíram a idade, duração do diabetes, presença de HAS, frequência cardíaca de repouso e presença de sintomas sugestivos de neuropatia autonômica. O presente estudo ratifica a importância do rastreamento sistemático e precoce desta complicação.
Resumo:
For goldfish (Carassius auratus), there are many varieties with different eye phenotypes due to artificial selection and adaptive evolution. Dragon eye is a variant eye characterized by a large-size eyeball protruding out of the socket similar to the eye of dragon in Chinese legends. In this study, anatomical structure of the goldfish dragon eye was compared with that of the common eye, and a stretching of the retina was observed in the enlarged dragon eye. Moreover, the homeobox-containing transcription factor Six3 cDNAs were cloned from the two types of goldfish, and the expression patterns were analyzed in both normal eye and dragon eye goldfish. No amino acid sequence differences were observed between the two deduced peptides, and the expression pattern of Six3 protein in dragon eye is quite similar to common eye during embryogenesis, but from 2 days after hatching, ectopic Six3 expression began to occur in the dragon eye, especially in the outer nuclear layer cells. With eye development, more predominant Six3 distribution was detected in the outer nuclear layer cells of dragon eye than that of normal eye, and fewer cell-layers in outer nuclear layer were observed in dragon eye retina than in normal eye retina. The highlight of this study is that higher Six3 expression occurs in dragon eye goldfish than in normal eye goldfish during retinal development of larvae. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
一、 药物滥用是一种慢性、复发性脑疾病。药物滥用将导致药物成瘾(addiction),其主要表现有药物依赖、药物耐受、药物敏感化以及药物停用后的戒断症状(withdraw symptom)。药物成瘾的核心特征是强迫性觅药和用药行为。药物成瘾会导致药物滥用者认知功能的损伤和认知偏差,并会造成滥用者情绪异常。药物成瘾是一个复杂的生物学过程,有着及其复杂的机理。对药物成瘾机制的解释有很多种,主要认为成瘾过程是一种学习记忆过程,学习记忆的机制在药物成瘾过程中起到了非常重要的作用。首先,学习记忆和药物成瘾过程都受到了相似的神经营养因子以及神经递质系统的调控,例如:它们都受cAMP,CREB等调控因子的调控。其次,研究发现与成瘾相关的线索,如用药有关的人物、地点或暗示等,在药物戒断很长时间后都会恢复吸毒者的用药行为。并且,当把与成瘾相关的线索呈现给毒品戒断中的人时,这些人会出现心率、呼吸加快,血压升高等现象,甚至表现出明显的渴求行为。药物对学习记忆的影响是复杂的,虽然重复使用药物会导致药物成瘾,并且这个过程需要学习记忆机制的参与,但同时使用吗啡却会对其他类型的学习记忆(如:恐惧性学习记忆、一次性被动回避学习记忆和水迷宫空间学习记忆)造成破坏。学习前给予吗啡可以剂量及状态依赖地破坏被动回避试验以及空间辨别试验的记忆获取过程。学习过程结束后立即给予吗啡可以破坏一次性被动回避试验、主动回避试验和恐惧条件化试验的记忆巩固过程。测试前给予吗啡可以破坏空间辨别试验的记忆提取过程。本研究的目的在于更进一步地了解使用吗啡导致吗啡成瘾以及使用吗啡导致学习记忆的各个阶段受损的机制。为此我们采用了药理学以及多种行为学的方法,1、用PTZ诱发的癫痫持续状态干扰吗啡成瘾的学习记忆过程,进一步比较了吗啡成瘾的学习记忆与其他学习记忆,例如:空间学习记忆以及食物奖赏学习记忆的机制有何异同;2、研究了β-肾上腺素系统与阿片系统在空间记忆巩固过程中的相互作用;3、我们还研究了NMDA受体的激动剂和拮抗剂在吗啡破坏空间记忆提取过程中的作用。研究结果发现: 1.戊四唑诱发的癫痫持续状态,对吗啡建立的条件化位置偏好没有任何影响,动物仍然对阳性箱(吗啡匹配箱)表现出明显的偏好。但是癫痫持续状态破坏了食物建立的条件化位置偏好,并且还破坏了水迷宫和Y迷宫检测的空间记忆。癫痫持续状态破坏了食物建立的条件化位置偏好,原因不是由于其影响了动物的食欲。此外,癫痫持续状态也没有持续地破坏动物的活动能力,因此,对动物活动量的影响也不是造成其他学习记忆破坏的原因。这些结果说明,吗啡成瘾的学习记忆和普通的学习记忆在机制上可能存在不同之处。为了说明这个问题,我们还需要进行其他更深入的研究。 2、训练后立即单独注射吗啡(0.25和2.5 mg/kg)或心得安(2,10和20 mg/kg)都不会破坏动物Y-迷宫空间记忆的巩固过程,动物仍然能识别新异环境,并在里面停留较长时间。但是,训练后同时注射吗啡和心得安却可以破坏动物空间记忆的巩固过程。并且,较高剂量的吗啡(2.5 mg/kg)加上较高剂量的心得安(10和20 mg/kg)对记忆的破坏更严重,实验组动物在新异环境停留的时间显著低于对照组。这说明阿片系统和去甲肾上腺素系统在破坏记忆巩固的过程中可能有协同作用。 3、记忆提取前30分钟注射吗啡(1和10 mg/kg)可以剂量依赖地破坏Y-迷宫空间记忆的提取。单独注射NMDA受体的激动剂NMDA(1,2和4 mg/kg)对动物的空间记忆提取没有影响,但是,单独注射NMDA受体拮抗剂MK-801(0.05,0.1和0.2 mg/kg)剂量依赖地破坏了空间记忆的提取。同时注射吗啡(10 mg/kg)和NMDA(2 mg/kg)可以阻断吗啡对空间记忆造成的破坏作用。相反,共同注射吗啡(1 mg/kg)和MK-801(0.05 mg/kg)可以加重吗啡对空间记忆造成的破坏作用。这说明谷氨酸系统可以干扰吗啡对记忆提取过程的影响。 二、衰老严重地影响了人们的视觉功能,然而眼睛光学系统的老年性改变并不能完全解释清楚这种视觉功能衰退。一般认为是神经系统的退化导致了这种老年性功能降低。但是,研究显示视网膜(retina和外膝体(dorsal lateral geniculate nucleus, dLGN)在衰老的过程中神经元的数量和体积以及神经元的功能特性,如对比度敏感性、空间分辨率等,都没有明显的变化,因此,人们推测老化导致的神经系统的变化发生在更高级的视觉皮层。过去几年的研究发现老年动物视觉皮层细胞发生了一系列反应特性的改变,如:老年动物皮层细胞的方向选择性和方位选择性降低以及细胞反应的潜伏期延长。这些细胞水平的变化被认为是老年性视觉功能衰退的神经机制。为了更全面地了解衰老过程对视觉皮层的影响以及细胞反应改变与整体功能降低之间的关系,本研究采用活体动物细胞外单位记录的方法,比较了青年和老年猕猴初级视觉皮层细胞时间反应特性和空间反应特性的差异。研究结果发现:老年动物初级视觉皮层细胞的时间频率和空间频率敏感性明显比年轻动物降低。表现为老年动物初级视觉皮层细胞的最优时间和空间频率、空间分辨率(spatial resolution, SR)和较高时间截至频率(high temporal frequency cut-off, TF50)都显著低于年轻动物初级视觉皮层细胞,同时伴随着这些功能的降低,老年动物初级视觉皮层细胞的自发放增加,对视觉刺激的反应增加,但是信噪比却显著降低。这些结果表明,老年动物初级视觉皮层细胞的功能在老化过程中都普遍降低。这可能是导致老年人视觉功能降低的原因。
Resumo:
This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.
Resumo:
This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.
Resumo:
Under natural viewing conditions small movements of the eye, head, and body prevent the maintenance of a steady direction of gaze. It is known that stimuli tend to fade when they a restabilized on the retina for several seconds. However; it is unclear whether the physiological motion of the retinal image serves a visual purpose during the brief periods of natural visual fixation. This study examines the impact of fixational instability on the statistics of the visua1 input to the retina and on the structure of neural activity in the early visual system. We show that fixational instability introduces a component in the retinal input signals that in the presence of natural images, lacks spatial correlations. This component strongly influences neural activity in a model of the LGN. It decorrelates cell responses even if the contrast sensitivity functions of simulated cells arc not perfectly tuned to counterbalance the power-law spectrum of natural images. A decorrelation of neural activity at the early stages of the visual system has been proposed to be beneficial for discarding statistical redundancies in the input signals. The results of this study suggest that fixational instability might contribute to establishing efficient representations of natural stimuli.
Resumo:
How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.
Resumo:
This article describes a nonlinear model of neural processing in the vertebrate retina, comprising model photoreceptors, model push-pull bipolar cells, and model ganglion cells. Previous analyses and simulations have shown that with a choice of parameters that mimics beta cells, the model exhibits X-like linear spatial summation (null response to contrast-reversed gratings) in spite of photoreceptor nonlinearities; on the other hand, a choice of parameters that mimics alpha cells leads to Y-like frequency doubling. This article extends the previous work by showing that the model can replicate qualitatively many of the original findings on X and Y cells with a fixed choice of parameters. The results generally support the hypothesis that X and Y cells can be seen as functional variants of a single neural circuit. The model also suggests that both depolarizing and hyperpolarizing bipolar cells converge onto both ON and OFF ganglion cell types. The push-pull connectivity enables ganglion cells to remain sensitive to deviations about the mean output level of nonlinear photoreceptors. These and other properties of the push-pull model are discussed in the general context of retinal processing of spatiotemporal luminance patterns.