933 resultados para RNA 18S
Resumo:
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Resumo:
RNA isolation is essential to study gene expression at the molecular level. However, RNA isolation is difficult in organisms (plants and algae) that contain large amounts of polysaccharides, which co-precipitate with RNA. Currently, there is no commercial kit available, specifically for the isolation of high-quality RNA from these organisms. Furthermore, because of the large amounts of polysaccharides, the common protocols for RNA isolation usually result in poor yields when applied to algae. Here we describe a simple method for RNA isolation from the marine red macroalga Gracilaria tenuistipitata var. liui Zhang et Xia (Rhodophyta), which can be applied to other plants and algae.
Resumo:
In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form intriguingly organized complexes. Two intermediate complexes, pre-40S and pre-60S, are formed at the early stages of 35S pre-rRNA processing and give rise to the mature ribosome subunits. Each of these complexes contains specific pre-rRNAs, some ribosomal proteins and processing factors. The novel yeast protein Utp25p has previously been identified in the nucleolus, an indication that this protein could be involved in ribosome biogenesis. Here we show that Utp25p interacts with the SSU processome proteins Sas10p and Mpp10p, and affects 18S rRNA maturation. Depletion of Utp25p leads to accumulation of the pre-rRNA 35S and the aberrant rRNA 23S, and to a severe reduction in 40S ribosomal subunit levels. Our results indicate that Utp25p is a novel SSU processome subunit involved in pre-40S maturation.
Resumo:
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The 4.5S RNA molecule of Escherichia coli is essential to cell viability. It has been shown that depletion of this molecule inhibits protein synthesis, induces the heat shock response, and generally slows cell growth. The molecule has also been implicated in protein secretion, as in cells depleted of 4.5S RNA, an unsecreted precursor to ?-lactamase accumulates (pre-?-lactamase). A role in protein secretion is further supported by structural similarities with the 7S RNA molecule of eukaryotic SRP, specific binding to SRP54, and its homolog in E. coli, P48, and the ability of 7S RNA from certain archaebacteria to suppress 4.5S RNA depletion. In this study I have utilized strains with mutant forms of the 4.5S RNA genes in order to study the effect of altered 4.5S RNA on cell physiology. These strains have their mutant 4.55 RNA under the control of the tryptophan synthetic operon. Decreased growth rates, inhibited cell division, and altered protein synthesis all result from these mutations.
Resumo:
Cytogenetic studies in fish have been contributed significantly to a better understanding of the marine biodiversity, presenting information related to characterization, evolution and conservation of species e fisheries stocks. Among the marine species which cytogenetic data are less well known pelagic forms are detached, that despite the economic importance and conservation efforts have been suffering great pressure from the artisanal and industrial fisheries. The present work characterized cytogenetically six species of large pelagic fish in the Atlantic, belonging to the Order Perciformes, among them, four species of Scombridae, Thunnus albacares, T. obesus, Scomberomorus brasiliensis and Acanthocybium solandri and two Coryphaenidae, Coryphaena equiselis and C. hippurus using Classical cytogenetic methods as conventional staining, C-banding and Ag-NORs and molecular through staining fluorochromes AT and GC-specific and mapping of ribosomal multigene families, 18S and 5S. The identification of phylogenetic patterns and cytotaxonomic markers between the species and the presence of sex chromosomes in at least one species of Coryphaenidae, are particularly useful in the formulating of phylogenetic hypotheses, as well as comparisons between groups and populations
Resumo:
To determine the incidence of rotavirus infection among dairy herds in the State of Sdo Paulo, Brazil, 576 faecal samples obtained from calves aged 1-45 days with and without diarrhoea, reared on 63 dairy cattle farms, were analyzed. Polyacrylamide gel electrophoresis (PAGE) identified 28 samples positive for group A rotavirus, while four samples, two diarrhoeic and two non-diarrhoeic, showed a bisegmented genome with a typical picobirnavirus pattern. Electron microscopy revealed spherical virus particles with a diameter of 37 nm and without a defined surface structure. The present study is the first report of a bisegmented virus identified in cattle in Brazil. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The human ZC3H14 gene encodes an evolutionarily conserved Cys(3)His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag (EST) data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoforms 1, 2. 3, and 3short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform, 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys(3)His zinc finger polyadenosine RNA binding domain. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.
Resumo:
Pre-mRNA maturation in trypanosomatids occurs through a process called trans-splicing which involves excision of introns and union of exons in two independent transcripts. For the first time, we present the standardization of Trypanosoma cruzi permeable cells (Y strain) as a model for trans-splicing study of mRNAs in trypanosomes, following by RNase protection reaction, which localizes the SL exon and intron. This trans-splicing reaction in vitro was also used to analyze the influence of NFOH-121, a nitrofurazone-derivative, on this mechanism. The results suggested that the prodrug affects the RNA processing in these parasites, but the trans-splicing reaction still occurred.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)