943 resultados para Quality models
Resumo:
Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
Video Quality Assessment needs to correspond to human perception. Pixel-based metrics (PSNR or MSE) fail in many circumstances for not taking into account the spatio-temporal property of human's visual perception. In this paper we propose a new pixel-weighted method to improve video quality metrics for artifacts evaluation. The method applies a psychovisual model based on motion, level of detail, pixel location and the appearance of human faces, which approximate the quality to the human eye's response. Subjective tests were developed to adjust the psychovisual model for demonstrating the noticeable improvement of an algorithm when weighting the pixels according to the factors analyzed instead of treating them equally. The analysis developed demonstrates the necessity of models adapted to the specific visualization of contents and the model presents an advance in quality to be applied over sequences when a determined artifact is analyzed.
Resumo:
Hoy en día, por primera vez en la historia, la mayor parte de la población podrá vivir hasta los sesenta años y más (United Nations, 2015). Sin embargo, todavía existe poca evidencia que demuestre que las personas mayores, estén viviendo con mejor salud que sus padres, a la misma edad, ya que la mayoría de los problemas de salud en edades avanzadas están asociados a las enfermedades crónicas (WHO, 2015). Los sistemas sanitarios de los países desarrollados funcionan adecuadamente cuando se trata del cuidado de enfermedades agudas, pero no son lo suficientemente eficaces en la gestión de las enfermedades crónicas. Durante la última década, se han realizado esfuerzos para mejorar esta gestión, por medio de la utilización de estrategias de prevención y de reenfoque de la provisión de los servicios de atención para la salud (Kane et al. 2005). Según una revisión sistemática de modelos de cuidado de salud, comisionada por el sistema nacional de salud Británico, pocos modelos han conceptualizado cuáles son los componentes que hay que utilizar para proporcionar un cuidado crónico efectivo, y estos componentes no han sido suficientemente estructurados y articulados. Por lo tanto, no hay suficiente evidencia sobre el impacto real de cualquier modelo existente en la actualidad (Ham, 2006). Las innovaciones podrían ayudar a conseguir mejores diagnósticos, tratamientos y gestión de pacientes crónicos, así como a dar soporte a los profesionales y a los pacientes en el cuidado. Sin embargo, la forma en las que estas innovaciones se proporcionan no es lo suficientemente eficiente, efectiva y amigable para el usuario. Para mejorar esto, hace falta crear equipos de trabajo y estrategias multidisciplinares. En conclusión, hacen falta actividades que permitan conseguir que las innovaciones sean utilizadas en los sistemas de salud que quieren mejorar la gestión del cuidado crónico, para que sea posible: 1) traducir la “atención sanitaria basada en la evidencia” en “conocimiento factible”; 2) hacer frente a la complejidad de la atención sanitaria a través de una investigación multidisciplinaria; 3) identificar una aproximación sistemática para que se establezcan intervenciones innovadoras en el cuidado de salud. El marco de referencia desarrollado en este trabajo de investigación es un intento de aportar estas mejoras. Las siguientes hipótesis han sido propuestas: Hipótesis 1: es posible definir un proceso de traducción que convierta un modelo de cuidado crónico en una descripción estructurada de objetivos, requisitos e indicadores clave de rendimiento. Hipótesis 2: el proceso de traducción, si se ejecuta a través de elementos basados en la evidencia, multidisciplinares y de orientación económica, puede convertir un modelo de cuidado crónico en un marco descriptivo, que define el ciclo de vida de soluciones innovadoras para el cuidado de enfermedades crónicas. Hipótesis 3: es posible definir un método para evaluar procesos, resultados y capacidad de desarrollar habilidades, y asistir equipos multidisciplinares en la creación de soluciones innovadoras para el cuidado crónico. Hipótesis 4: es posible dar soporte al desarrollo de soluciones innovadoras para el cuidado crónico a través de un marco de referencia y conseguir efectos positivos, medidos en indicadores clave de rendimiento. Para verificar las hipótesis, se ha definido una aproximación metodológica compuesta de cuatro Fases, cada una asociada a una hipótesis. Antes de esto, se ha llevado a cabo una “Fase 0”, donde se han analizado los antecedentes sobre el problema (i.e. adopción sistemática de la innovación en el cuidado crónico) desde una perspectiva multi-dominio y multi-disciplinar. Durante la fase 1, se ha desarrollado un Proceso de Traducción del Conocimiento, elaborado a partir del JBI Joanna Briggs Institute (JBI) model of evidence-based healthcare (Pearson, 2005), y sobre el cual se han definido cuatro Bloques de Innovación. Estos bloques consisten en una descripción de elementos innovadores, definidos en la fase 0, que han sido añadidos a los cuatros elementos que componen el modelo JBI. El trabajo llevado a cabo en esta fase ha servido también para definir los materiales que el proceso de traducción tiene que ejecutar. La traducción que se ha llevado a cabo en la fase 2, y que traduce la mejor evidencia disponible de cuidado crónico en acción: resultado de este proceso de traducción es la parte descriptiva del marco de referencia, que consiste en una descripción de un modelo de cuidado crónico (se ha elegido el Chronic Care Model, Wagner, 1996) en términos de objetivos, especificaciones e indicadores clave de rendimiento y organizada en tres ciclos de innovación (diseño, implementación y evaluación). Este resultado ha permitido verificar la segunda hipótesis. Durante la fase 3, para demostrar la tercera hipótesis, se ha desarrollado un método-mixto de evaluación de equipos multidisciplinares que trabajan en innovaciones para el cuidado crónico. Este método se ha creado a partir del método mixto usado para la evaluación de equipo multidisciplinares translacionales (Wooden, 2013). El método creado añade una dimensión procedural al marco. El resultado de esta fase consiste, por lo tanto, en una primera versión del marco de referencia, lista para ser experimentada. En la fase 4, se ha validado el marco a través de un caso de estudio multinivel y con técnicas de observación-participante como método de recolección de datos. Como caso de estudio se han elegido las actividades de investigación que el grupo de investigación LifeStech ha desarrollado desde el 2008 para mejorar la gestión de la diabetes, actividades realizadas en un contexto internacional. Los resultados demuestran que el marco ha permitido mejorar las actividades de trabajo en distintos niveles: 1) la calidad y cantidad de las publicaciones; 2) se han conseguido dos contratos de investigación sobre diabetes: el primero es un proyecto de investigación aplicada, el segundo es un proyecto financiado para acelerar las innovaciones en el mercado; 3) a través de los indicadores claves de rendimiento propuestos en el marco, una prueba de concepto de un prototipo desarrollado en un proyecto de investigación ha sido transformada en una evaluación temprana de una intervención eHealth para el manejo de la diabetes, que ha sido recientemente incluida en Repositorio de prácticas innovadoras del Partenariado de Innovación Europeo en Envejecimiento saludable y activo. La verificación de las 4 hipótesis ha permitido demonstrar la hipótesis principal de este trabajo de investigación: es posible contribuir a crear un puente entre la atención sanitaria y la innovación y, por lo tanto, mejorar la manera en que el cuidado crónico sea procurado en los sistemas sanitarios. ABSTRACT Nowadays, for the first time in history, most people can expect to live into their sixties and beyond (United Nations, 2015). However, little evidence suggests that older people are experiencing better health than their parents, and most of the health problems of older age are linked to Chronic Diseases (WHO, 2015). The established health care systems in developed countries are well suited to the treatment of acute diseases but are mostly inadequate for dealing with CDs. Healthcare systems are challenging the burden of chronic diseases by putting more emphasis on the prevention of disease and by looking for new ways to reorient the provision of care (Kane et al., 2005). According to an evidence-based review commissioned by the British NHS Institute, few models have conceptualized effective components of care for CDs and these components have been not structured and articulated. “Consequently, there is limited evidence about the real impact of any of the existing models” (Ham, 2006). Innovations could support to achieve better diagnosis, treatment and management for patients across the continuum of care, by supporting health professionals and empowering patients to take responsibility. However, the way they are delivered is not sufficiently efficient, effective and consumer friendly. The improvement of innovation delivery, involves the creation of multidisciplinary research teams and taskforces, rather than just working teams. There are several actions to improve the adoption of innovations from healthcare systems that are tackling the epidemics of CDs: 1) Translate Evidence-Based Healthcare (EBH) into actionable knowledge; 2) Face the complexity of healthcare through multidisciplinary research; 3) Identify a systematic approach to support effective implementation of healthcare interventions through innovation. The framework proposed in this research work is an attempt to provide these improvements. The following hypotheses have been drafted: Hypothesis 1: it is possible to define a translation process to convert a model of chronic care into a structured description of goals, requirements and key performance indicators. Hypothesis 2: a translation process, if executed through evidence-based, multidisciplinary, holistic and business-oriented elements, can convert a model of chronic care in a descriptive framework, which defines the whole development cycle of innovative solutions for chronic disease management. Hypothesis 3: it is possible to design a method to evaluate processes, outcomes and skill acquisition capacities, and assist multidisciplinary research teams in the creation of innovative solutions for chronic disease management. Hypothesis 4: it is possible to assist the development of innovative solutions for chronic disease management through a reference framework and produce positive effects, measured through key performance indicators. In order to verify the hypotheses, a methodological approach, composed of four Phases that correspond to each one of the stated hypothesis, was defined. Prior to this, a “Phase 0”, consisting in a multi-domain and multi-disciplinary background analysis of the problem (i.e.: systematic adoption of innovation to chronic care), was carried out. During phase 1, in order to verify the first hypothesis, a Knowledge Translation Process (KTP) was developed, starting from the JBI Joanna Briggs Institute (JBI) model of evidence-based healthcare was used (Pearson, 2005) and adding Four Innovation Blocks. These blocks represent an enriched description, added to the JBI model, to accelerate the transformation of evidence-healthcare through innovation; the innovation blocks are built on top of the conclusions drawn after Phase 0. The background analysis gave also indication on the materials and methods to be used for the execution of the KTP, carried out during phase 2, that translates the actual best available evidence for chronic care into action: this resulted in a descriptive Framework, which is a description of a model of chronic care (the Chronic Care Model was chosen, Wagner, 1996) in terms of goals, specified requirements and Key Performance Indicators, and articulated in the three development cycles of innovation (i.e. design, implementation and evaluation). Thanks to this result the second hypothesis was verified. During phase 3, in order to verify the third hypothesis, a mixed-method to evaluate multidisciplinary teams working on innovations for chronic care, was created, based on a mixed-method used for the evaluation of Multidisciplinary Translational Teams (Wooden, 2013). This method adds a procedural dimension to the descriptive component of the Framework, The result of this phase consisted in a draft version of the framework, ready to be tested in a real scenario. During phase 4, a single and multilevel case study, with participant-observation data collection, was carried out, in order to have a complete but at the same time multi-sectorial evaluation of the framework. The activities that the LifeStech research group carried out since 2008 to improve the management of diabetes have been selected as case study. The results achieved showed that the framework allowed to improve the research activities in different directions: the quality and quantity of the research publications that LifeStech has issued, have increased substantially; 2 project grants to improve the management of diabetes, have been assigned: the first is a grant funding applied research while the second is about accelerating innovations into the market; by using the assessment KPIs of the framework, the proof of concept validation of a prototype developed in a research project was transformed into an early stage assessment of innovative eHealth intervention for Diabetes Management, which has been recently included in the repository of innovative practice of the European Innovation Partnership on Active and Health Ageing initiative. The verification of the 4 hypotheses lead to verify the main hypothesis of this research work: it is possible to contribute to bridge the gap between healthcare and innovation and, in turn, improve the way chronic care is delivered by healthcare systems.
Resumo:
An important aspect of Process Simulators for photovoltaics is prediction of defect evolution during device fabrication. Over the last twenty years, these tools have accelerated process optimization, and several Process Simulators for iron, a ubiquitous and deleterious impurity in silicon, have been developed. The diversity of these tools can make it difficult to build intuition about the physics governing iron behavior during processing. Thus, in one unified software environment and using self-consistent terminology, we combine and describe three of these Simulators. We vary structural defect distribution and iron precipitation equations to create eight distinct Models, which we then use to simulate different stages of processing. We find that the structural defect distribution influences the final interstitial iron concentration ([Fe-i]) more strongly than the iron precipitation equations. We identify two regimes of iron behavior: (1) diffusivity-limited, in which iron evolution is kinetically limited and bulk [Fe-i] predictions can vary by an order of magnitude or more, and (2) solubility-limited, in which iron evolution is near thermodynamic equilibrium and the Models yield similar results. This rigorous analysis provides new intuition that can inform Process Simulation, material, and process development, and it enables scientists and engineers to choose an appropriate level of Model complexity based on wafer type and quality, processing conditions, and available computation time.
Resumo:
Recombinant human erythropoietin (rHuEpo) has been used successfully in the treatment of cancer-related anemia. Clinical observations with several patients with multiple-myeloma treated with rHuEpo has shown, in addition to the improved quality of life, a longer survival than expected, considering the poor prognostic features of these patients. Based on these observations, we evaluated the potential biological effects of rHuEpo on the course of tumor progression by using murine myeloma models (MOPC-315-IgAλ2 and 5T33 MM-IgG2b). Here we report that daily treatment of MOPC-315 tumor-bearing mice with rHuEpo for several weeks induced complete tumor regression in 30–60% of mice. All regressors that were rechallenged with tumor cells rejected tumor growth, and this resistance was tumor specific. The Epo-triggered therapeutic effect was shown to be attributed to a T cell-mediated mechanism. Serum Ig analysis indicated a reduction in MOPC-315 λ light chain in regressor mice. Intradermal inoculation of 5T33 MM tumor cells followed by Epo treatment induced tumor regression in 60% of mice. The common clinical manifestation of myeloma bone disease in patients with multiple-myeloma was established in these myeloma models. Epo administration to these tumor-bearing mice markedly prolonged their survival and reduced mortality. Therefore, erythropoietin seems to act as an antitumor therapeutic agent in addition to its red blood cell-stimulating activity.
Resumo:
Phase equilibrium data regression is an unavoidable task necessary to obtain the appropriate values for any model to be used in separation equipment design for chemical process simulation and optimization. The accuracy of this process depends on different factors such as the experimental data quality, the selected model and the calculation algorithm. The present paper summarizes the results and conclusions achieved in our research on the capabilities and limitations of the existing GE models and about strategies that can be included in the correlation algorithms to improve the convergence and avoid inconsistencies. The NRTL model has been selected as a representative local composition model. New capabilities of this model, but also several relevant limitations, have been identified and some examples of the application of a modified NRTL equation have been discussed. Furthermore, a regression algorithm has been developed that allows for the advisable simultaneous regression of all the condensed phase equilibrium regions that are present in ternary systems at constant T and P. It includes specific strategies designed to avoid some of the pitfalls frequently found in commercial regression tools for phase equilibrium calculations. Most of the proposed strategies are based on the geometrical interpretation of the lowest common tangent plane equilibrium criterion, which allows an unambiguous comprehension of the behavior of the mixtures. The paper aims to show all the work as a whole in order to reveal the necessary efforts that must be devoted to overcome the difficulties that still exist in the phase equilibrium data regression problem.
Resumo:
The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.
Resumo:
Statistical machine translation (SMT) is an approach to Machine Translation (MT) that uses statistical models whose parameter estimation is based on the analysis of existing human translations (contained in bilingual corpora). From a translation student’s standpoint, this dissertation aims to explain how a phrase-based SMT system works, to determine the role of the statistical models it uses in the translation process and to assess the quality of the translations provided that system is trained with in-domain goodquality corpora. To that end, a phrase-based SMT system based on Moses has been trained and subsequently used for the English to Spanish translation of two texts related in topic to the training data. Finally, the quality of this output texts produced by the system has been assessed through a quantitative evaluation carried out with three different automatic evaluation measures and a qualitative evaluation based on the Multidimensional Quality Metrics (MQM).
Resumo:
Mode of access: Internet.
Resumo:
Transportation Department, Office of the Assistant Secretary for Systems Development and Technology, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Research, Washington, D.C.
Water quality screening model framework for estuaries : preliminary application to Long Island Sound
Resumo:
Mode of access: Internet.
Resumo:
Vol. 7: second ed., 1975.
Resumo:
Thesis (Master's)--University of Washington, 2016-06