986 resultados para Proto-oncogene
Resumo:
Two major intermediaries in signal transduction pathways are pp60v-sre family tyrosine kinases and heterotrimeric guanine nucleotide-binding proteins. In Rat-1 fibroblasts transformed by the v-src oncogene, endothelin-1 (ET-1)-induced inositol 1,4,5-trisphosphate accumulation is increased 6-fold, without any increases in the numbers of ET-1 receptors or in the response to another agonist, thrombin. This ET-1 hyperresponse can be inhibited by an antibody directed against the carboxyl terminus of the Gq/G11 alpha subunit, suggesting that the Gq/G11 protein couples ET-1 receptors to phospholipase C (PLC). While v-src transformation did not increase the expression of the Gq/G11 alpha subunit, immunoblotting with anti-phosphotyrosine antibodies and phosphoamino acid analysis demonstrated that the Gq/G11 alpha subunit becomes phosphorylated on tyrosine residues in v-src-transformed cells. Moreover, when the Gq/G11 protein was extracted from control and transformed cell lines and reconstituted with exogenous PLC, AIF*4-stimulated Gq/G11 activity was markedly increased in extracts from v-src-transformed cells. Our results demonstrate that the process of v-src transformation can increase the tyrosine phosphorylation state of the Gq/G11 alpha-subunit in intact cells and that the process causes an increase in the Gq/G11 alpha-subunit's ability to stimulate PLC following activation with AIF-4.
Resumo:
The host range of retroviral oncogenes is naturally limited by the host range of the retroviral vector. The question of whether the transforming host range of retroviral oncogenes is also restricted by the host species has not been directly addressed. Here we have tested in avian and murine host species the transforming host range of two retroviral onc genes, myc of avian carcinoma viruses MH2 and MC29 and mht/raf of avian carcinoma virus MH2 and murine sarcoma virus MSV 3611. Virus vector-mediated host restriction was bypassed by recombining viral oncogenes with retroviral vectors that can readily infect the host to be tested. It was found that, despite high expression, transforming function of retroviral myc genes is restricted to avian cells, and that of retroviral mht/raf genes is restricted to murine cells. Since retroviral oncogenes encode the same proteins as certain cellular genes, termed protooncogenes, our data must also be relevant to the oncogene hypothesis of cancer. According to this hypothesis, cancer is caused by mutation of protooncogenes. Because protooncogenes are conserved in evolution and are presumed to have conserved functions, the oncogene hypothesis assumes no host range restriction of transforming function. For example, mutated human proto-myc is postulated to cause Burkitt lymphoma, because avian retroviruses with myc genes cause cancer in birds. But there is no evidence that known mutated protooncogenes can transform human cells. The findings reported here indicate that host range restriction appears to be one of the reasons (in addition to insufficient transcriptional activation) why known, mutated protooncogenes lack transforming function in human cells.
Resumo:
A regulatable retroviral vector in which the v-myc oncogene is driven by a tetracycline-controlled transactivator and a human cytomegalovirus minimal promoter fused to a tet operator sequence was used for conditional immortalization of adult rat neuronal progenitor cells. A single clone, HC2S2, was isolated and characterized. Two days after the addition of tetracycline, the HC2S2 cells stopped proliferating, began to extend neurites, and expressed the neuronal markers tau, NeuN, neurofilament 200 kDa, and glutamic acid decarboxylase in accordance with the reduced production of the v-myc oncoprotein. Differentiated HC2S2 cells expressed large sodium and calcium currents and could fire regenerative action potentials. These results suggest that the suppression of the v-myc oncogene may be sufficient to make proliferating cells exit from cell cycles and induce terminal differentiation. The HC2S2 cells will be valuable for studying the differentiation process of neurons.
Resumo:
The leukemogenic tyrosine kinase fusion protein Bcr-Abl activates a Ras-dependent pathway required for transformation. To examine subsequent signal transduction events we measured the effect of Bcr-Abl on two mitogen-activated protein kinase (MAPK) cascades--the extracellular signal-regulated kinase (ERK) pathway and the Jun N-terminal kinase (JNK) pathway. We find that Bcr-Abl primarily activates JNK in fibroblasts and hematopoietic cells. Bcr-Abl enhances JNK function as measured by transcription from Jun responsive promoters and requires Ras, MEK kinase (MAPK/ERK kinase kinase), and JNK to do so. Dominant-negative mutants of c-Jun, which inhibit the endpoint of the JNK pathway, impair Bcr-Abl transforming activity. These findings implicate the JNK pathway in transformation by a human leukemia oncogene.
Resumo:
A causal role has been inferred for ERBB2 overexpression in the etiology of breast cancer and other epithelial malignancies. The development of therapeutics that inhibit this tyrosine kinase cell surface receptor remains a high priority. This report describes the specific downregulation of ERBB2 protein and mRNA in the breast cancer cell line SK-BR-3 by using antisense DNA phosphorothioates. An approach was developed to examine antisense effects which allows simultaneous measurements of antisense dose and gene specific regulation on a per cell basis. A fluorescein isothiocyanate end-labeled tracer oligonucleotide was codelivered with antisense DNA followed by immunofluorescent staining for ERBB2 protein expression. Two-color flow cytometry measured the amount of both intracellular oligonucleotide and ERBB2 protein. In addition, populations of cells that received various doses of nucleic acids were physically separated and studied. In any given transfection, a 100-fold variation in oligonucleotide dosage was found. ERBB2 protein expression was reduced greater than 50%, but only in cells within a relatively narrow uptake range. Steady-state ERBB2 mRNA levels were selectively diminished, indicating a specific antisense effect. Cells receiving the optimal antisense dose were sorted and analyzed for cell cycle changes. After 2 days of ERBB2 suppression, breast cancer cells showed an accumulation in the G1 phase of the cell cycle.
Resumo:
Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.
Resumo:
We examined the functional consequences of cellular transformation of rat IAR-2 epithelial cells, by a mutant N-ras oncogene, on the dynamics of active lamellae, structures that play an important role in cell motility, adhesion, and surface-receptor capping. Lamellar activity was assessed by measuring the rate of outer-edge pseudopodial activity and by analyzing the motility of Con A-coated beads placed on lamellar surfaces with optical tweezers. Although transformation dramatically affected the shape and size of active cellular lamellae, there was little detectable effect on either pseudopodial activity or bead movement. To investigate the potential relationship between functional lamellar activity and the microtubule cytoskeleton, lamellar activity was examined in nontransformed and transformed cells treated with the microtubule-disrupting drug nocodazole. In the absence of microtubules, transformed cells were less polarized and possessed decreased rates of pseudopodial and bead motility. On the basis of these observations, it is suggested that ras-induced transformation of epithelial cells consists of two cytoskeletal modifications: overall diminished actin cytoskeletal dynamics in lamellae and reorganization of the microtubule cytoskeleton that directs pseudopodial activity to smaller polarized lamellae.
Resumo:
DNA replication of the adenovirus genome complexed with viral core proteins is dependent on the host factor designated template activating factor I (TAF-I) in addition to factors required for replication of the naked genome. Recently, we have purified TAF-I as 39- and 41-kDa polypeptides from HeLa cells. Here we describe the cloning of two human cDNAs encoding TAF-I. Nucleotide sequence analysis revealed that the 39-kDa polypeptide corresponds to the protein encoded by the set gene, which is the part of the putative oncogene associated with acute undifferentiated leukemia when translocated to the can gene. The 41-kDa protein contains the same amino acid sequence as the 39-kDa protein except that short N-terminal regions differ in both proteins. Recombinant proteins, which were purified from extracts of Escherichia coli, expressing the proteins from cloned cDNAs, possessed TAF-I activities in the in vitro replication assay. A particular feature of TAF-I proteins is the presence of a long acidic tail in the C-terminal region, which is thought to be an essential part of the SET-CAN fusion protein. Studies with mutant TAF-I proteins devoid of this acidic region indicated that the acidic region is essential for TAF-I activity.
Resumo:
src and erbB are two tyrosine kinase-encoding oncogenes carried by retroviruses, which have distinct disease specificities. The former induces predominantly sarcomas, and the latter, leukemias. Src and ErbB have similar catalytic domains but have very different regulatory domains. A wealth of information exists concerning how different regulatory domains [Src homology 2 (SH2) and SH3 domains and autophosphorylation sites] control substrate and disease specificities. Whether the catalytic domain helps determine these specificities remains to be explored. Here we show that the Src catalytic domain is enzymatically active when substituted into the ErbB backbone and interacts with the ErbB regulatory domain. This ErbB/Src chimera displays autophosphorylation and substrate phosphorylation patterns different from those of both Src and ErbB. Neither SH2 and SH3 nor autophosphorylation sites are required for the Src catalytic domain to exert its fibroblast transforming ability. Most significantly, the catalytic domain can convert erbB from a leukemogenic oncogene into a sarcomagenic oncogene, suggesting that the leukemogenic determinants in part reside within the ErbB catalytic domain.
Resumo:
Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.
Resumo:
Este proyecto de innovación docente denominado “Proto-col: red interuniversitaria de trabajo colaborativo en protocolo y gestión de eventos” se ha desarrollado durante los últimos cinco cursos académicos (2010-2011, 2011-2012, 2012-2013, 2013-2014, 2014-2015) y constituye en la actualidad un grupo de trabajo consolidado, en el que sus miembros han compartido un ejercicio de reflexión sobre las capacidades, habilidades y destrezas en este ámbito, por parte de los estudiantes de los Grados en Publicidad y Relaciones Públicas ofertados por la Universidad de Alicante y la Universitat Jaume I de Castellón. Para ello, durante estos años, se ha trabajado en el diseño de metodología didáctica aplicada a las asignaturas optativas vinculadas al protocolo y la gestión de eventos, y se han realizado diferentes investigaciones exploratorias sobre perfiles profesionales o la presencia de materias vinculadas a la gestión de eventos, el protocolo y las relaciones institucionales en las universidades españolas. Todas estas aportaciones, junto con la participación en cursos de especialización y másteres universitarios, la realización de proyectos académicos, la dirección de TFGs, TFMs y tesis doctorales reflejan el trabajo colaborativo de un grupo de profesores especializados en esta materia y justifica la pertinencia de este proyecto interuniversitario que se ha traducido en diversas contribuciones académicas y experiencias de enseñanza-aprendizaje.
Resumo:
ZEI Director Prof. Ludger Kühnhardt recalls the leading ideas of federalism as territorial equivalent for political pluralism. Celebrating the 80th anniversary of Bonn historian and political scientist Prof. Dr. Hans-Peter Schwarz, he reflects on the emerging EU domestic policies in ZEI Discussion Paper C 225.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.