861 resultados para Potential theory (Mathematics).
Resumo:
[EN] The work of Hecataeus has not been sufficiently recogniced in its scientifical and symbolical importance. The elaboration of the map is in the origin of the theory of proportions, which is essential to the Greek mathematics, origin this that has not been never in mind of the investigators of the Greek mathematics. Its «Genealogies» break the cyclical experience of time of that archaic society. And the scientifical prose, of which he is one of the beginners, opens to new experiences of time, too, introduces a new type of privacy and exploits the potential rationality of the ordinary language, that the sacred poetry obstructed to manifest.
Resumo:
The objective of this dissertation is to study the theory of distributions and some of its applications. Certain concepts which we would include in the theory of distributions nowadays have been widely used in several fields of mathematics and physics. It was Dirac who first introduced the delta function as we know it, in an attempt to keep a convenient notation in his works in quantum mechanics. Their work contributed to open a new path in mathematics, as new objects, similar to functions but not of their same nature, were being used systematically. Distributions are believed to have been first formally introduced by the Soviet mathematician Sergei Sobolev and by Laurent Schwartz. The aim of this project is to show how distribution theory can be used to obtain what we call fundamental solutions of partial differential equations.
Resumo:
Synapses exhibit an extraordinary degree of short-term malleability, with release probabilities and effective synaptic strengths changing markedly over multiple timescales. From the perspective of a fixed computational operation in a network, this seems like a most unacceptable degree of added variability. We suggest an alternative theory according to which short-term synaptic plasticity plays a normatively-justifiable role. This theory starts from the commonplace observation that the spiking of a neuron is an incomplete, digital, report of the analog quantity that contains all the critical information, namely its membrane potential. We suggest that a synapse solves the inverse problem of estimating the pre-synaptic membrane potential from the spikes it receives, acting as a recursive filter. We show that the dynamics of short-term synaptic depression closely resemble those required for optimal filtering, and that they indeed support high quality estimation. Under this account, the local postsynaptic potential and the level of synaptic resources track the (scaled) mean and variance of the estimated presynaptic membrane potential. We make experimentally testable predictions for how the statistics of subthreshold membrane potential fluctuations and the form of spiking non-linearity should be related to the properties of short-term plasticity in any particular cell type.
Resumo:
Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Resumo:
Developing a theoretical description of turbulent plumes, the likes of which may be seen rising above industrial chimneys, is a daunting thought. Plumes are ubiquitous on a wide range of scales in both the natural and the man-made environments. Examples that immediately come to mind are the vapour plumes above industrial smoke stacks or the ash plumes forming particle-laden clouds above an erupting volcano. However, plumes also occur where they are less visually apparent, such as the rising stream of warmair above a domestic radiator, of oil from a subsea blowout or, at a larger scale, of air above the so-called urban heat island. In many instances, not only the plume itself is of interest but also its influence on the environment as a whole through the process of entrainment. Zeldovich (1937, The asymptotic laws of freely-ascending convective flows. Zh. Eksp. Teor. Fiz., 7, 1463-1465 (in Russian)), Batchelor (1954, Heat convection and buoyancy effects in fluids. Q. J. R. Meteor. Soc., 80, 339-358) and Morton et al. (1956, Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A, 234, 1-23) laid the foundations for classical plume theory, a theoretical description that is elegant in its simplicity and yet encapsulates the complex turbulent engulfment of ambient fluid into the plume. Testament to the insight and approach developed in these early models of plumes is that the essential theory remains unchanged and is widely applied today. We describe the foundations of plume theory and link the theoretical developments with the measurements made in experiments necessary to close these models before discussing some recent developments in plume theory, including an approach which generalizes results obtained separately for the Boussinesq and the non-Boussinesq plume cases. The theory presented - despite its simplicity - has been very successful at describing and explaining the behaviour of plumes across the wide range of scales they are observed. We present solutions to the coupled set of ordinary differential equations (the plume conservation equations) that Morton et al. (1956) derived from the Navier-Stokes equations which govern fluid motion. In order to describe and contrast the bulk behaviour of rising plumes from general area sources, we present closed-form solutions to the plume conservation equations that were achieved by solving for the variation with height of Morton's non-dimensional flux parameter Γ - this single flux parameter gives a unique representation of the behaviour of steady plumes and enables a characterization of the different types of plume. We discuss advantages of solutions in this form before describing extensions to plume theory and suggesting directions for new research. © 2010 The Author. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Resumo:
Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.
Resumo:
Multidisciplinary Design Optimization (MDO) is a methodology for optimizing large coupled systems. Over the years, a number of different MDO decomposition strategies, known as architectures, have been developed, and various pieces of analytical work have been done on MDO and its architectures. However, MDO lacks an overarching paradigm which would unify the field and promote cumulative research. In this paper, we propose a differential geometry framework as such a paradigm: Differential geometry comes with its own set of analysis tools and a long history of use in theoretical physics. We begin by outlining some of the mathematics behind differential geometry and then translate MDO into that framework. This initial work gives new tools and techniques for studying MDO and its architectures while producing a naturally arising measure of design coupling. The framework also suggests several new areas for exploration into and analysis of MDO systems. At this point, analogies with particle dynamics and systems of differential equations look particularly promising for both the wealth of extant background theory that they have and the potential predictive and evaluative power that they hold. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.
Resumo:
Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe-Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.
Resumo:
A theory of scattering by charged dislocation lines in a quasitriangle potential well of AlxGa1-xN/GaN heterostructures is developed. The dependence of mobility on carrier sheet density and dislocation density is obtained. The results are compared with those obtained from a perfect two-dimensional electron gas and the reason for discrepancy is given.
Resumo:
In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.
Resumo:
In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.
Resumo:
Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.
Resumo:
A novel technique of manufacturing Al0.3Ga0.7As pyramids by liquid phase epitaxy (LPE) for scanning probe microscopy (SPM) sensors is reported Four meticulously designed conditions-partial oxidation, deficient solute, air quenching and germanium doping result in defect-free homogeneous nucleation and subsequent pyramid formation. Micrometer-sized frustums and pyramids are detected by scanning electron microscopy (SEM). The sharp end of the microtip has a radius of curvature smaller than 50 nm. It is believed that such accomplishments would contribute not only to crystal growth theory, but also to miniature fabrication technology.
Resumo:
A two-dimensional atomic scattering theory is developed for scattering of electrons by a circularly symmetric quantum structure in the two-dimensional electron gas. It is found that the scattering cross section oscillates as a function of ka where k is the electron wave vector and a is the radius of the cylindrical potential barrier. If there is a quantum well inside the potential barrier, there appears a series of sharp resonant-tunneling peaks superposed on the original scattering-cross-section curves. The width of the resonant-tunneling peak depends sensitively on the thickness, the height of the potential barrier, and the electron energy.