924 resultados para Poly (3-methylthiophene)
Resumo:
A novel poly(p-xylylene), PPX, derivative bearing phenyl side groups was electrochemically synthesized in 85% yield. The polymer, poly(2-phenyl-p-xylylene) (PPPX), presented a major fraction (88%) soluble in common organic solvents. It showed to be thermally resistant up to 140 degrees C. UV-VIS analysis revealed an Egap of similar to 3.0 eV. Gas sensors made from thin films of CSA doped PPPX deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five carbonyl compounds: acetaldehyde, propionaldehyde. benzaldehyde, acetone and butanone. Three-dimensional plots of relative response vs. time of half-response vs. time of half-recovery showed good discrimination between the five carbonyl Compounds tested. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers
Resumo:
Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, 3IL(cis-L), (3)MLCT(Re -> me4phen), and (3)IL(Me4phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re -> Me4phen) and (3)IL(Me4phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (Delta E(a)) for interconversion between (3)MLCT(Re -> me4Phen) and (3)IL(Me4phen) emitting states were determined. For L = cis-stpy, Delta E(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, Delta E(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(me4phen) state to (3)MLCT(Re -> Me4phen), k(i) congruent to 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.
Resumo:
Toll-like receptors (TLRs), a family of mammalian receptors, are able to recognize nucleic acids. TLR3 recognizes double-stranded (ds)RNA, a product of the replication of certain viruses. Polyinosinic-polycytidylic acid, referred to as poly(I:C), an analog of viral dsRNA, interacts with TLR3 thereby eliciting immunoinflammatory responses characteristic of viral infection or down-regulating the expression of chemokine receptor CXCR4. It is known that dsRNA also directly activates interferon (IFN)-induced enzymes, such as the RNA-dependent protein kinase (PKR). In the present study, the mRNA expression of TLR3, CXCR4, IFN gamma and PKR was investigated in a culture of peripheral blood mononuclear cells (PBMCs) stimulated with poly(I:C) and endogenous RNA from human PBMCs. No cytotoxic effect on the cells or on the proliferation of CD3(+), CD4(+) and CD8(+) cells was observed. TLR3 expression in the PBMCs in the presence of poly(I:C) was up-regulated 9.5-fold, and TLR3 expression in the PBMCs treated with endogenous RNA was down-regulated 1.8-fold (p=0.002). The same trend was observed for IFN gamma where in the presence of poly(I:C) an 8.7-fold increase was noted and in the presence of endogenous RNA a 3.1-fold decrease was observed. In the culture activated with poly(1:C), mRNA expression of CXCR4 increased 8.0-fold and expression of PKR increased 33.0-fold. Expression of these genes decreased in the culture treated with endogenous RNA when compared to the culture without stimulus. Thus, high expression of mRNA for TLR3, IFN gamma, CXCR4 and PKR was observed in the presence of poly(I:C) and low expression was observed in the cells cultured with endogenous RNA. In conclusion, TLR3 may play major physiological roles that are not in the context of viral infection. It is possible that RNA released from cells could contain enough double-stranded structures to regulate cell activation. The involvement of endogenous RNA in endogenous gene expression and its implications in the regulation thereof, are still being studied, and will have significant implications in the future.
Resumo:
The thioxanthone-sensitized photodegradation of poly(alkyl methacrylate) films [alkyl = methyl, ethyl, butyl, and hexyl] was studied using near UV-vis light. The photooxidation process continued even after the total consumption of the sensitizer, possibly due to the excitation of the ketyl groups formed during the first stages of the process. The rate of oxidation, as well as the formation of hydroxy, peroxy, and ketyl groups was faster for polymers with larger ester groups. The decrease of the molecular weight of the degradated polymers was also larger for the hexyl substituted polymer. The side-chain size effect was attributed to the larger amount of secondary hydrogens available for abstraction by the triplet state of thioxanthone, present in the larger ester groups. The lower glass transition temperature of the hexyl substituted polymer allows a better diffusion of oxygen to the deeper layers of the films that also contributes to the faster photodegradation rate. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 1283-1288, 2010
Resumo:
Local anesthetic agents cause temporary blockade of nerve impulses productiong insensitivity to painful stimuli in the area supplied by that nerve. Bupivacaine (BVC) is an amide-type local anesthetic widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. in this study, we prepared and characterized nanosphere formulations containing BVC. To achieve these goals, BVC loaded poly(DL-lactide-co-glycolide) (PLGA) nanospheres (NS) were prepared by nanopreciptation and characterized with regard to size distribution, drug loading and cytotoxicity assays. The 2(3-1) factorial experimental design was used to study the influence of three different independent variables on nanoparticle drug loading. BVC was assayed by HPLC, the particle size and zeta potential were determined by dynamic light scattering. BVC was determined using a combined ultrafiltration-centrifugation technique. The results of optimized formulations showed a narrow size distribution with a polydispersivity of 0.05%, an average diameter of 236.7 +/- 2.6 nm and the zeta potential -2.93 +/- 1,10 mV. In toxicity studies with fibroblast 3T3 cells, BVC loaded-PLGA-NS increased cell viability, in comparison with the effect produced by free BVC. In this way, BVC-loaded PLGA-NS decreased BVC toxicity. The development of BVC formulations in carriers such as nanospheres could offer the possibility of controlling drug delivery in biological systems, prolonging the anesthetic effect and reducing toxicity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Poly(styrene-co-methyl methacrylate) (PS-PMMA) ionomers with several degrees of sulfonation were synthesized and characterized by infrared, UV-vis, and NMR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). Stable Langmuir films could be produced with PS-PMMA with 3 and 6 mol % of sulfonation, while PS-PMMA 8% exhibited material loss to the water subphase, probably due to its higher solubility. Surface pressure and surface potential isotherms with PS-PMMA 3% spread onto salt-containing subphases pointed to a film behavior characteristic of the polyelectrolyte effect, where charge repulsion governs the film properties. The Langmuir-Blodgett films of this ionomer were successfully transferred onto various substrates, as confirmed by UV-vis and FTIR spectroscopies. Using cycling voltammetry, we show that LB films from PS-PMMA 3% can be applied in selective sensing of dopamine, even in the presence of interferents such as ascorbic acid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Films made from a blend of poly(epsilon-caprolactone) and poly(vinyl chloride) (PCL/PVC) retained high crystallinity in a segregated PCL phase. Structural and morphological changes produced when the films were exposed to high potency ultraviolet (UV) irradiation for 10 h were measured by UV-Vis spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). They were different to those observed with homopolymer PCL and PVC films treated under the same conditions. The FTIR spectra of the PCL/PVC blend suggest that blending decreased the susceptibility of the PCL to crystallize when irradiated. Similarly, although scanning electron micrographs of PCL showed evidence of growth of crystalline domains, particularly after UV irradiation, the images of PCL/PVC were fairly featureless. It is apparent that the degradation behavior is strongly influenced by the interaction of the two polymers in the amorphous phase.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.