756 resultados para Pion interferometry
Resumo:
4th International Workshop on Transverse Polisarization Phenomena in Hard Processes (TRANSVERSITY 2014)
Resumo:
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Resumo:
This work explored the use of industrial drop-on-demand inkjet printing for masking steel surfaces on engineering components, followed by chemical etching, to produce patterned surfaces. A solvent-based ink was printed on to mild steel samples and the influences of substrate topography and substrate temperature were investigated. Contact angle measurements were used to assess wettability. Regular patterns of circular spots (∼60 /on diameter) and more complex mask patterns were printed. Variation of the substrate temperature had negligible effect on the final size of the printed drops or on the resolution achieved. Colored optical interference fringes were observed on the dried ink deposits and correlated with film thickness measurements by whitelight interferometry.
Resumo:
Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials.
Resumo:
Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials. © 2014 The Authors.
Resumo:
We present a novel reference compensation method for eliminating environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating (FBG) sensors. By employing a shielded wavelength-division-multiplexed reference FBG in the system the environmental noise is mea, sured from the reference channel, and then subtracted from the demodulation result of each sensor channel. An approximate 40 dB reduction of the environmental noise has been experimentally achieved over a frequency range from 20 Hz to 2 kHz. This method is also suitable for the elimination of broadband environmental noise. The corresponding FBG sensor array system proposed in this paper has shown a wave-length resolution of 7 x 10(-4) pm/root Hz. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.
Resumo:
Based on the semiconductor laser whose spectral line with width is compressed to be less than 1.2Mhz, a system was designed to measure and improve the amplitude and frequency of the real-time microvibration with sinusoidal modulation. real-time microvibration measurement was executed without alignment problem in the interferometry; and low-frequency disturbance of environment could be eliminated. Suggestions were also given to consummate the system. The system also has resistance against the low frequency disturbance of the environment.
Resumo:
A pure surface plasmon polariton (SPP) model predicted that the SPP excitation in a slit-groove structure at metallodielectric interfaces exhibits an intricate dependence on the groove width P. Lalanne et al. [Phys. Rev. Lett. 95, 263902 (2005); Nat. Phys. 2, 551 (2006)]. In this paper, we present a simple far-field experiment to test and validate this interesting theoretical prediction. The measurement results clearly demonstrate the predicted functional dependence of the SPP coupling efficiency on groove width, in good agreement with the SPP picture.
Resumo:
A novel algorithm of phase reconstruction based on the integral of phase gradient is presented. The algorithm directly derives two real-valued partial derivatives from three phase-shifted interferograms. Through integrating the phase derivatives, the desired phase is reconstructed. During the phase reconstruction process, there is no need for an extra rewrapping manipulation to ensure values of the phase derivatives lie in the interval [-pi, pi] as before, thus this algorithm can prevent error or distortion brought about by the phase unwrapping operation. Additionally, this algorithm is fast and easy to implement, and insensitive to the nonuniformity of the intensity distribution of the interferogram. The feasibility of the algorithm is demonstrated by both computer simulation and experiment.
Resumo:
A novel type of moving-corner-cube-pair interferometer is presented, and its principle and properties are studied. It consists of two moving corner cubes fixed together back to back as a single moving part (the moving-corner-cube-pair), four fixed plane mirrors and one beamsplitter. The optical path difference (OPD) is created by the straight reciprocating motion of the moving-corner-cube-pair, and the OPD value is eight times the physical shift value of the moving-corner-cube-pair. This novel type of interferometer has no tilt and shearing problems. It is almost ideal for the very-high-resolution infrared spectrometers.
Resumo:
A simple method of testing deep aspheric surfaces is presented. The apparatus consists of a Twyman-Green interferometer and a liquid compensatory container. Two lenses, one with spherical surfaces and the other with a spherical surface and an aspheric surface, were tested by using this method. The device is very simple and easy to assemble. (C) 1998 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The very long baseline interferometry result of a superluminal radio source PKS 0420-014 at 5 GHz with Shanghai (China), Urumqi (China), Note (Italy), and HartRAO (South Africa) telescopes is presented. Proper motions of the relativistic jet components in the source are calculated. Based on the Self-Compton emission in a uniform spherical model, the beaming parameters of the source are estimated. The results show that PKS 0420-014 has a high Doppler factor of 9.3, a Lorentz factor of 6.5, and a small angle of 5.5 degrees to the line of sight.
Resumo:
The ability of the Evpatoria RT-70 radar complex to perform research on space debris was investigated in four trial experiments during 2001-2003. The echo-signals of 25 objects at geostationary, highly elliptical and medium-altitude orbits were recorded on magnetic tapes at radio telescopes in Russia, Italy, China and Poland. The multi-antenna system configuration gives potential to supplement the classic radar data with precise angular observations using the technique of Very Long Baseline Interferometry. The first stage of such processing was fulfilled by the correlator in N. Novgorod, Russia. The cross-correlation of transmitted and received signals was obtained for the 11 objects on the Evpatoria-Bear Lakes, Evpatoria-Urumqi and Evpatoria-Noto baselines. This activity also promoted developing the optical observations of geostationary objects, conducted for the improvement of the radar target ephemerides. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
通过对子午岭林区不同植被的土壤性质进行实验室测定和野外调查,对饱和土壤水分运动的重要参数之一土壤饱和导水率(Ks)及其相关因子进行了多元分析和通径分析,揭示了植被恢复提高土壤水分传输性能的机理,主要结论如下:土壤有机质是子午岭林区九种植被下土壤饱和导水率提高的主要驱动因子。不同植被下的土壤饱和导水率均随深度的增加而迅速降低,尽管草地和先锋草地在5~10cm深度有一强透水层。土壤饱和导水率在剖面上的平均值,从辽东栎、早期森林、灌丛、先锋草地、弃耕地到草地依次降低。灌丛与草地、弃耕地的差异达到显著水平,辽东栎顶级群落的饱和导水率最高,植被的恢复明显提高了土壤饱和导水率。土壤容重、毛管孔隙度、>0.25mm团聚体含量及粘粒含量直接影响土壤饱和导水率。土壤有机质含量的提高能够改善容重、毛管孔隙度、团聚体含量等物理性质。