945 resultados para Pilotos aeronáuticos
Resumo:
The design of an electrodynamic tether is a complex task that involves the control of dynamic instabilities, optimization of the generated power (or the descent time in deorbiting missions), and minimization of the tether mass. The electrodynamic forces on an electrodynamic tether are responsible for variations in the mechanical energy of the tethered system and can also drive the system to dynamic instability. Energy sources and sinks in this system include the following: 1) ionospheric impedance, 2) the potential drop at the cathodic contactor, 3) ohmic losses in the tether, 4) the corotational plasma electric field, and 5) generated power and/or 6) input power. The analysis of each of these energy components, or bricks, establishes parameters that are useful tools for tether design. In this study, the nondimensional parameters that govern the orbital energy variation, dynamic instability, and power generation were characterized, and their mutual interdependence was established. A space-debris mitigation mission was taken as an example of this approach for the assessment of tether performance. Numerical simulations using a dumbbell model for tether dynamics, the International Geomagnetic Reference Field for the geomagnetic field, and the International Reference Ionosphere for the ionosphere were performed to test the analytical approach. The results obtained herein stress the close relationships that exist among the velocity of descent, dynamic stability, and generated power. An optimal tether design requires a detailed tradeoff among these performances in a real-world scenario.
Resumo:
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error.
Resumo:
In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.
Resumo:
An experience developed by the authors in the design of educational tools, funded on multimedia support for using in teaching, will be presented. These tools have been used on the subject of Helicopters, http://ocw.upm.es/ingenieriaaeroespacial/ helicopteros at the Universidad Politécnica de Madrid (E.U.I.T. Aeronáutica). Throughout more than ten years, these didactical and educational elements have been defined and developed. It has the singularity that most of them have been designed for undergraduate students, as a part of their end of degree projectwork. This peculiarity has led to a wide range of proposals and solutions, as well as an appropriate approach. depending on the level of knowledge. The evolution of tools for developing these materials will be presented, discussing advantages and disadvantages. Finally, we will advance the new materials which are being prepared at present.
Resumo:
Systems integration is the origin of most major difficulties found in the engineering design of aeronautical vehicles. The whole design team must assure that each subsystem accomplishes its particular goals and that, together with the rest of the systems, they all meet the general aircraft requirements.Design and building of UAS is a field of actuation to which leading Universities, research Centers and Aeronautical designers have dedicated a lot of effort. In recent years, a team of students, lecturers and professors at the Escuela Universitaria de Ingeniería Técnica Aeronáutica (EUITA) have been working on the design and building of a UAS for civil observation. The design of multi-mission Unmanned Aerial Vehicles (UAVs) has seen a rapid progress in the last years. A wide variety of designs and applications, some of them really ingenious, have been proposed. The project, which has been going on as a teamwork experience for the last ten years, consists of the design and building of a UAV, and its peculiarity is that it has been carried out entirely by undergraduate students, as part of their Final Research Project. The students face a challenge that includes all the features and stages of an authentic engineering project. We present the current moment of evolution in the process, together with a description of the main difficulties the project has undergone, as a global experience in engineering design and development.
Resumo:
It has been shown that black holes can be quantized by using Bohr’s idea of quantizing the motion of an electron inside the atom. We apply these ideas to the universe as a whole. This approach reinforces the suggestion that it may be a way to unify gravity with quantum theory.
Resumo:
Using the relation proposed by Weinberg in 1972, combining quantum and cosmological parameters, we prove that the self gravitational potential energy of any fundamental particle is a quantum, with physical properties independent of the mass of the particle. It is a universal quantum of gravitational energy, and its physical properties depend only on the cosmological scale factor R and the physical constants ℏ and c. We propose a modification of the Weinberg’s relation, keeping the same numerical value, but substituting the cosmological parameter H/c by 1/R.
Resumo:
Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the universe
Resumo:
We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K� yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of � 8 � 1010 A=cm2 they reach 1:5 keV=�m and 0:8 keV=�m, respectively. For higher current densities up to 1012 A=cm2, numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV=�m for electron current densities of 1014 A=cm2, representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.
Resumo:
A method is presented to construct computationally efficient reduced-order models (ROMs) of three-dimensional aerodynamic flows around commercial aircraft components. The method is based on the proper orthogonal decomposition (POD) of a set of steady snapshots, which are calculated using an industrial solver based on some Reynolds averaged Navier-Stokes (RANS) equations. The POD-mode amplitudes are calculated by minimizing a residual defined from the Euler equations, even though the snapshots themselves are calculated from viscous equations. This makes the ROM independent of the peculiarities of the solver used to calculate the snapshots. Also, both the POD modes and the residual are calculated using points in the computational mesh that are concentrated in a close vicinity of the aircraft, which constitute a much smaller number than the total number of mesh points. Despite these simplifications, the method provides quite good approximations of the flow variables distributions in the whole computational domain, including the boundary layer attached to the aircraft surface and the wake. Thus, the method is both robust and computationally efficient, which is checked considering the aerodynamic flow around a horizontal tail plane, in the transonic range 0.4?Mach number?0.8, ?3°?angle of attack?3°.
Resumo:
We present a technique to reconstruct the electromagnetic properties of a medium or a set of objects buried inside it from boundary measurements when applying electric currents through a set of electrodes. The electromagnetic parameters may be recovered by means of a gradient method without a priori information on the background. The shape, location and size of objects, when present, are determined by a topological derivative-based iterative procedure. The combination of both strategies allows improved reconstructions of the objects and their properties, assuming a known background.
Resumo:
In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser, is prevented when multiple plasma instabilities such as filamentation and hosing, and nonlinear coherent structures (vortices/post-solitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these insabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 {\mu}m (gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.
Resumo:
The current I to a cylindrical Langmuir probe with a bias Φp satisfying β≡eΦp/mec2∼O(1) is discussed. The probe is considered at rest in an unmagnetized plasma composed of electrons and ions with temperatureskTe∼kTi≪mec2. For small enough radius, the probe collects the relativistic orbital-motion-limited (OML) current I OML , which is shown to be larger than the non-relativistic result; the OML current is proportional to β1/2 and β3/2 in the limits β≪1 and β≫1, respectively. Unlike the non-relativistic case, the electron density can exceed the unperturbed density value. An asymptotic theory allowed to compute the maximum radius of the probe to collect OML current, the sheath radius for probe radius well below maximum and how the ratio I/I OML drops below unity when the maximum radius is exceeded. A numerical algorithm that solves the Vlasov-Poisson system was implemented and density and potential profiles presented. The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers are discussed density value. An asymptotic theory allowed to compute the maximum radius of the probe to collect OML current, the sheath radius for probe radius well below maximum and how the ratio I/IOML drops below unity when the maximum radius is exceeded. A numerical algorithm that solves the Vlasov-Poisson system was implemented and density and potential profiles presented. The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers are discussed.
Resumo:
Aircraft Operators Companies (AOCs) are always willing to keep the cost of a flight as low as possible. These costs could be modelled using a function of the fuel consumption, time of flight and fixed cost (over flight cost, maintenance, etc.). These are strongly dependant on the atmospheric conditions, the presence of winds and the aircraft performance. For this reason, much research effort is being put in the development of numerical and graphical techniques for defining the optimal trajectory. This paper presents a different approach to accommodate AOCs preferences, adding value to their activities, through the development of a tool, called aircraft trajectory simulator. This tool is able to simulate the actual flight of an aircraft with the constraints imposed. The simulator is based on a point mass model of the aircraft. The aim of this paper is to evaluate 3DoF aircraft model errors with BADA data through real data from Flight Data Recorder FDR. Therefore, to validate the proposed simulation tool a comparative analysis of the state variables vector is made between an actual flight and the same flight using the simulator. Finally, an example of a cruise phase is presented, where a conventional levelled flight is compared with a continuous climb flight. The comparison results show the potential benefits of following user-preferred routes for commercial flights.
Resumo:
After the experience gained during the past years it seems clear that nonlinear analysis of bridges are very important to compute ductility demands and to localize potential hinges. This is specially true for irregular bridges in which it is not clear weather or not it is possible to use a linear computation followed by a correction using a behaviour factor. To simplify the numerical effort several approximate methods have been proposed. Among them, the so-called Dynamic Plastic Hinge Method in which an evolutionary shape function is used to reduce the structure to a single degree of freedom system seems to mantein a good balance between accuracy and simplicity. This paper presents results obtained in a parametric study conducted under the auspicies of PREC-8 european research program.