343 resultados para PYRUVATE
Resumo:
This study aimed to evaluate different concentrations of kisspeptin, as well as the interaction of kisspeptin and FSH/LH in vitro maturation and oocyte competence in cattle. In Experiment 1 was determined the minimum concentration of Kisspeptin (Kp) to be used, and in Experiment 2 was evaluated its interection with FSH and LH. The oocytes were collected in a commercial slaughterhouse and only Grade I oocytes were utilized. The oocytes were cultured in TCM-199 medium with bicarbonate plus 10% FBS, sodium pyruvate (22μg/mL), amikacin (83mg/mL), FSH (0.5μg/mL), with different concentrations of Kp, the treatments were: FSH + 0M Kp-10; FSH + 10-7M Kp-10, FSH + 10-6M Kp-10; FSH + 10-5M Kp-10. In Experiment 2, was used better concentration of Kp found in Experiment 1, the following treatments: no hormones; FSH; FSH + Kp-10; FSH + LH; FSH, LH + Kp-10; Kp-10. The oocyte competence was determined by nuclear maturation, mitochondrial distribution, MitoTracker® Orange CMTMRos fluorescence intensity and DCF. The evaluation of nuclear maturation was made after 24 hours incubation and the oocytes were stained with DAPI to determine the nuclear stage (Germinal Vesicle-GV, Metaphase I-MI and Metaphase II-MII).The mitochondrial distribution was classified as peripheral/semiperipheral and diffuse in clusters/granules, evaluated after stained with the MitoTracker® Orange CMTMRos, and was also identified the intensity of it. To determine the intensity of ROS oocytes were stained with DCF. The statistical analysis was performed by SAS GLIMMIX PROC. In Experiment 1 oocytes matured only with the FSH reached a smaller nuclear maturation when compared to those who were matured with Kisspeptin at different concentrations (FSH:13/33; FSH + 10-7M Kp-10: 28/35; FSH + 10-6M Kp-10:30/34; FSH + 10-5M Kp-10:28/32; P=0,0001). There was no statistical difference in mitochondrial distribution between treatments (P>0.05). The fluorescence intensity of MitoTracker did not differ among treatments (P>0.05). The DCF fluorescence intensity was lower when the concentration of Kp was increased in the medium (FSH:12177726,1; FSH + 10-7M Kp-10:10945982,83; FSH + 10-6M Kp-10:9820536,53; FSH + 10-5M Kp-10:9147016,38; P<0,0001). Based in the Experiment 1 results, the concentration of Kp was determined in 10-7M. In Experiment 2 the mitochondrial distribution was different between treatments, because oocytes matured only with Kp or FSH+LH, reached a oocyte competence greater than those maturated with FSH only or without hormone addition (no hormones:66,66%; FSH:66,66%; FSH + Kp-10:75,86%; FSH + LH:91,17%; FSH, LH + Kp-10:82,85%; Kp-10:91,17%; P<0,05). The no hormones resulted in a lower nuclear maturation than the other treatments (no hormones: 5/18; FSH:18/32; FSH + Kp-10:22/29; FSH + LH:26/33; FSH, LH + Kp-10:26/34; Kp-10:25/34; P=0,0094). The fluorescence intensity of probes MitoTracker and DCF was lower when Kp was added to the maturation medium (no hormones:1228363/540069; FSH:2307984/1395751; FSH + Kp-10:1941890/1114948; FSH + LH:2502145/1722376; FSH, LH + Kp-10:2286173/1467782; Kp-10:1859411/979325 P<0,0001). So this is the first study that shows that Kisspeptin stimulates oocyte maturation without the presence of gonadotropins in the maturation medium.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Extensive use of fossil fuels is leading to increasing CO2 concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO2. As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO2 41 Pa e.g. 399 µatm) and CO2 acidified seawater with pH of 7.7 (pCO2 134 Pa e.g. 1318 µatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10 % reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (Two way ANOSIM: Global R = 1) while acidification effects were less pronounced (Global R = 0.518). Significant differences in gene expression patterns (ANOSIM R = 0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO2 treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO2 effect. We found an up regulation of metabolic genes (between 10 to 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23 and 36% in msp130, SM30B, SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na+/K+-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology.
Resumo:
Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [(31)P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.
Resumo:
Succinate is a naturally occurring metabolite in organism’s cell and is industrially important chemical with various applications in food and pharmaceutical industry. It is also widely used to produce bio-degradable plastics, surfactants, detergents etc. In last decades, emphasis has been given to bio-based chemical production using industrial biotechnology route rather than fossil-based production considering sustainability and environment friendly economy. In this thesis I am presenting a computational model for silico metabolic engineering of Saccharomyces cerevisiae for large scale production of succinate. For metabolic modelling, I have used OptKnock and OptGene optimization algorithms to identify the reactions to delete from the genome-scale metabolic model of S. cerevisiae to overproduce succinate by coupling with organism’s growth. Both OptKnock and OptGene proposed numerous straightforward and non-intuitive deletion strategies when number of constraints including growth constraint to the model were applied. The most interesting strategy identified by both algorithms was deletion combination of pyruvate decarboxylase and Ubiquinol:ferricytochrome c reductase(respiratory enzyme) reactions thereby also suggesting anaerobic fermentation of the organism in glucose medium. Such strategy was never reported earlier for growth-coupled succinate production in S.cerevisiae.
Resumo:
Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 mu g/L), isoproturon (0.1 and 1 mu g/L), or both in a mixture (0.2 and 0.1 mu g/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase alpha (AMPK alpha), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was upregulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.
Resumo:
Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa.
Resumo:
A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766HT, was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002 m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 degrees C (optimum 30 degrees C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H-2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C-14 : 0, C-16:1 omega 7, C-16:1 omega 7 DMA and C-16:0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G +C content of the genomic DNA was 33.7 molo/o. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridia les, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) (=DSM 27501(T)=JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella pro funda.
Resumo:
This article presents a dataset proving the simultaneous presence of a 5′UTR-truncated PDHA1 mRNA and a full-length PDHA2 mRNA in the somatic cells of a PDC-deficient female patient and all members of her immediate family (parents and brother). We have designed a large set of primer pairs in order to perform detailed RT-PCR assays allowing the clear identification of both PDHA1 and PDHA2 mRNA species in somatic cells. In addition, two different experimental approaches were used to elucidate the copy number of PDHA1 gene in the patient and her mother. The interpretation and discussion of these data, along with further extensive experiments concerning the origin of this altered gene expression and its potential therapeutic consequences, can be found in “Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: null mutations in the PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells” (A. Pinheiro, M.J. Silva, C. Florindo, et al., 2016).
Resumo:
Apesar de ser um micronutriente essencial aos organismos, o cobre (Cu) é tóxico quando presente em elevadas concentrações na água. O mecanismo pelo qual este metal exerce sua toxicidade em invertebrados marinhos ainda não está bem estabelecido. Dentre os diversos efeitos relatados, observa-se uma redução do consumo de oxigênio corporal e tecidual no marisco Mesodesma mactroides exposto (96 h) ao Cu (150 µg L-1 ) em água do mar (salinidade 30). Portanto, o objetivo do presente estudo foi avaliar os efeitos desta exposição ao Cu no metabolismo energético em teciduais do marisco M. mactroides. Os conteúdos de ATP e coenzimas (NAD+ e NADH) nas brânquias, glândula digestiva e músculo pedal não foram alterados pela exposição ao Cu, indicando que estes tecidos mantiveram suas capacidades de produção aeróbica de energia. Porém, foi observada uma redução no conteúdo hemolinfático de ATP. Quanto ao conteúdo de proteínas, houve um aumento na glândula digestiva, que pode estar associado à maior oxidação de proteínas já relatada para esse tecido após exposição ao Cu. Os conteúdos de lipídios, glicogênio e glicose permaneceram inalterados em todos os tecidos analisados, exceto no músculo pedal, onde foi observada uma redução no conteúdo de glicose. Por isso, os conteúdos de piruvato e lactato também foram analisados no músculo pedal e na hemolinfa. Em ambos tecidos, foi observado um aumento do conteúdo de lactato, sem alteração no conteúdo de piruvato. Portanto, os resultados do presente estudo sugerem que os tecidos de M. mactroides utilizam a anaerobiose para obtenção de energia durante a exposição ao Cu, conforme demonstrado no músculo pedal e hemolinfa. Apesar disso, a hemolinfa não é capaz de manter o nível de ATP nas condições experimentais testadas.
Resumo:
The focus of this research is to determine if a relationship exists between the stability constant and the initial uptake rate of a mercury species by bacteria. Cultures of the sulfate-reducing bacteria (SRB) strain Desulfovibrio desulfuricans G20 were washed with a bicarbonate buffer solution containing either lactate and sulfate or pyruvate and fumarate. The washed cell solutions were then spiked with either mercury bound to natural organic matter (Hg-NOM) or neutral mercury chloride (HgCl2), followed by sampling over time to provide kinetic data. Despite the significantly different stability constants for Hg-NOM and HgCl2, the calculated initial rate constants for mercury uptake for these two types of complexes appeared to be comparable. Uptake of mercury sulfide species was inconclusive due to possible formation of cinnabar. A simple model that is based on assumptions of passive diffusion and facilitated uptake of mercury by bacteria was evaluated for its potential to simulate the uptake. The model results only agreed with experimental data for HgCl2 uptake.