964 resultados para POLY(METHACRYLIC ACID)
Resumo:
New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.
Resumo:
Aromatic poly(ether-ketone)s having pendant carboxyl groups have been obtained by direct, one-pot, Friedel-Crafts copolycondensation of 4,4'-diphenoxybenzophenone with a mixture of terephthaloyl chloride (TC) and trimellitic anhydride acid chloride (TAAC), over a wide range of TAAC/TC molar ratios, in the presence of anhydrous aluminum chloride. The syntheses were performed as precipitation-polycondensations, and the polymers were obtained in particulate form. Besides globular particles of polymer, small quantities of elongated, needlelike particles were observed when the mole ratio TAAC/TC was less than 1. Use of X-ray microdiffraction with synchrotron radiation has revealed that the needlelike material consists of a cyclic compound containing 10 phenylene units, i.e., the crystals are of a [2 + 2] macrocyclic dimer. The polymers obtained are soluble in strong acids and in mixtures of methanesulfonic acid or trifluoroacetic acid with chlorinated hydrocarbons. The molecular structures of the polymers were confirmed by H-1 and C-13 NMR spectroscopy. Reaction of TAAC with 4,4'-diphenoxybenzophenone produced mainly meta-orientation of the resulting ketone linkages. The size of the polymer particles, their molecular weights, and the melting behavior of the products obtained depend on the TAAC/TC ratio used. Ortho-keto acid residues, formed during reaction of anhydride groups of TAAC with 4,4'-diphenoxybenzophenone, exhibit ring-chain tautomerism. A carboxyl-containing aromatic polyketone derived from p-terphenyl, and thus having with no ether linkages in the main chain, was prepared by analogous chemistry, and functional derivatives of carboxy-substituted polyketones were also obtained and characterized.
Resumo:
Background and aims: Arterial stiffness is an independent predictor of cardiovascular disease (CVD) events and all-cause mortality and may be differentially affected by dietary fatty acid (FA) intake. The aim of this study was to investigate the relationship between FA consumption and arterial stiffness and blood pressure in a community-based population. Methods and results: The Caerphilly Prospective Study recruited 2398 men, aged 45-59 years, who were followed up at 5-year intervals for a mean of 17.8-years (n 787). A semi-quantitative food frequency questionnaire estimated intakes of total, saturated, mono- and poly-unsaturated fatty acids (SFA, MUFA, PUFA). Multiple regression models investigated associations between intakes of FA at baseline with aortic pulse wave velocity (aPWV), augmentation index (AIx), systolic and diastolic blood pressure (SBP, DBP) and pulse pressure after a 17.8-year follow-up - as well as cross-sectional relationships with metabolic markers. After adjustment, higher SFA consumption at baseline was associated with higher SBP (P = 0.043) and DBP (P = 0.002) and after a 17.8-year follow-up was associated with a 0.51 m/s higher aPWV (P = 0.006). After adjustment, higher PUFA consumption at baseline was associated with lower SBP (P = 0.022) and DBP (P = 0.036) and after a 17.8-year follow-up was associated with a 0.63 m/s lower aPWV (P = 0.007). Conclusion: This study suggests that consumption of SFA and PUFA have opposing effects on arterial stiffness and blood pressure. Importantly, this study suggests that consumption of FA is an important risk factor for arterial stiffness and CVD.
Resumo:
This paper explores the potential of polysialic acid (PSA) as a carrier for low molecular weight anticancer drugs. A PSA–epirubicin (Epi) conjugate was synthesized and compared against Epi conjugates containing established carriers, namely: N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, poly(ethylene glycol) (PEG) and polyglutamic acid (PGA). Biological assessments in the breast cancer cell line MCF-7 and in the anthracycline resistant MCF-7/DX showed that the PSA–Epi conjugate had the highest activity (40% and 30% cell death in the two cell lines at 1 mM Epi equiv., respectively). FACS studies confirmed internalization of all conjugates by cholesterol-dependent endocytosis. PSA–Epi showed release of Epi (40% at 5 h) when incubated with lysosome extracts. In vivo evaluation showed that all conjugates had a significantly longer half-life compared to free Epi. This study also allowed an investigation on the effect of the polymeric carrier on the biological activity of a conjugate, with the biodegradability of the carrier emerging as an important feature.
Resumo:
The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(l-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into β-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers—in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide–polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped “associative polymers”. Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups
Resumo:
Antibodies to specific nucleic acid conformations are amongst the methods that have allowed the study of non-canonical (Watson-Crick) DNA structures in higher organisms. In this work, the structural limitations for the immunological detection of DNA.RNA hybrid duplexes were examined using specific RNA homopolymers as probes for homopolymer polydeoxyadenylic acid (poly(dA)).polydeoxythymidylic acid (poly(dT))-rich regions of Rhynchosciara americana (Diptera: Sciaridae) chromosomes. Anti-DNA.RNA duplexes did not react with the complex formed between chromosomal poly(dA) and exogenous polyuridylic acid (poly(rU)). Additionally, poly(rU) prevented the detection of polyadenylic acid.poly(dT) hybrid duplexes preformed in situ. These results raised the possibility that three-stranded structures rather than duplexes were formed in chromosomal sites. To test this hypothesis, the specificity of antibodies to triple-helical nucleic acids was reassessed employing distinct nucleic acid configurations. These antibodies were raised to the poly(dA).poly(rU).poly(rU) complex and have been used here for the first time in immunocytochemistry. Anti-triplex antibodies recognised the complex poly(dA).poly(rU).poly(rU) assembled with poly(rU) in poly(dA).poly(dT)-rich homopolymer regions of R. americana chromosomes. The antibodies could not detect short triplex stretches, suggesting the existence of constraints for triple-helix detection, probably related to triplex tract length. In addition, anti-poly(dA).poly(rU).poly(rU) antibodies reacted with the pericentric heterochromatin of RNase-treated polytene chromosomes of R. americana and Drosophila melanogaster. In apparent agreement with data obtained in cell types from other organisms, the results of this work suggest that significant triple-helix DNA extensions can be formed in pericentric regions of these species.
Resumo:
The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).
Resumo:
Poly(3-hydroxybutyrate) was produced in fed-batch cultures of Ralstonia eutropha DSM 428 and Alcaligenes latus ATCC 29712 on a mineral medium with different carbon sources such as sucrose, sodium lactate, lactic acid, soybean oil and fatty acid. The bacteria converted the different carbon sources supplied into P3HB. The best results were obtained when lactate or soybean oil were supplied as the sole carbon source. The range of number average molar mass (Mn) for the polymers, analyzed by Gel Permeation Chromatography was 1.65 to 0.79 x 10(5) g mol(-1). FTIR spectroscopy revealed a characteristic absorbance associated with polyester structures. The crystallinity degree, determinate from X-ray diffractograms, was about 69% in all synthesized polymers. The thermal properties associated to semicrystalline polymers indicated a glass transition at 0.1 degrees C and a melting point at about 175 degrees C and enthalpy of 63-89 J g(-1). The (1)H-NMR and (13)C-NMR spectra of the polymers were in agreement with the calculated chemical shifts associated with P3HB structures.
Resumo:
Impedance spectroscopy has been proven a powerful tool for reaching high sensitivity in sensor arrays made with nanostructured films in the so-called electronic tongue systems, whose distinguishing ability may be enhanced with sensing units capable of molecular recognition. In this study we show that for optimized sensors and bio-sensors the dielectric relaxation processes involved in impedance measurements should also be considered, in addition to an adequate choice of sensing materials. We used sensing units made from layer-by-layer (LbL) films with alternating layers of the polyeletrolytes, poly(allylamine) hydrochloride (PAH) and poly(vinyl sulfonate) (PVS), or LbL films of PAH alternated with layers of the enzyme phytase, all adsorbed on gold interdigitate electrodes. Surprisingly, the detection of phytic acid was as effective in the PVS/PAH sensing system as with the PAH/phytase system, in spite of the specific interactions of the latter. This was attributed to the dependence of the relaxation processes on nonspecific interactions such as electrostatic cross-linking and possibly on the distinct film architecture as the phytase layers were found to grow as columns on the LbL film, in contrast to the molecularly thin PAH/PVS films. Using projection techniques, we were able to detect phytic acid at the micromolar level with either of the sensing units in a data analysis procedure that allows for further optimization.
Resumo:
Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This work reports the structural and spectroscopy characterization of poly(styrene sulfonate) (PSS) films doped with neodymium (Nd) ions. Nd-PSS films were processed using the acid of poly(styrene sulfonate) - H-PSS and neodymium nitrate - Nd(NO(3))(3); the maximum incorporation of Nd ions in the polymeric matrix was equal 19.3%. The absorption in the UV-Vis-NIR spectral region presents typical electronic transitions of Nd 3, ions, with well resolved peaks. The infrared spectra present the transition bands of PSS with characteristic line shape broadening, and the presence of vibrational modes of N-O groups in the range of 1400-720 cm(-1), prove the permanence of Nd(NO(3))(x), with x = 1, 2 and/or 3. in the H-PSS matrix. UV-Vis site selective photoluminescence data indicate that the incorporation of Nd 31 introduces a blue shift in PSS emission (325-800 nm), decreasing the interaction between adjacent PSS lateral groups (aromatic rings). Nd(3+) reabsorption and energy transfer effects between the PSS matrix and Nd(3+) were also observed. The IR emission of Nd-PSS films at 1076 rim ((4)F(3/2) -> (4)I(11/2)) present constant efficiency, independent on Nd(3+) concentration. The Judd-Ofelt theory was employed to analyze radiative properties. The excitation spectra prove the energy transfer between the polymeric matrix and Nd(3+). Complex impedance data was used to probe relaxation processes during the charge transport within the polymeric matrix. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The reaction of dimethylthallium(III) hydroxide with picolinic acid (Hpic), 3-hydroxypicolinic acid (H(2)3hpic) and 6-hydroxypicolinic acid (H(2)6hpic) in an aqueous/methanol mixture afforded the complexes [TlMe(2)(pic)] (1), [TlMe(2)(H3hpic)] (2) and [TlMe(2)(H6hpic)] (3), respectively. Complex 3`, [NaTlMe(2)(6hpic)(2)](n), was obtained as a minor product from a methanolic solution of 3. Compounds 1-3 were characterized by IR and Raman spectroscopy and, in the cases of 1, 2 and Y, by single-crystal X-ray diffraction. Complex 3` is the first example of an H6hpic(-) heterobimetallic compound to be isolated. The (1)H and (13)C NMR spectra of 1 and 2 are also discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.
Resumo:
The electrochemical behavior of poly(methylene blue) on different electrodes has been investigated by electrochemical quartz crystal microbalance and in situ spectrophotometric measurements coupled to cyclic voltammetry. Polymeric films were obtained potentiodynamically and the charge transport mechanism was analyzed. The electrochemical results show that polymer electroactivity depends not only on pH but also on the substrate. Charge compensation changes with both pH and the size of the anions showing a transition in the pH range of polymer pKa. It was demonstrated by spectroelectrochemical experiments that the electroactivity of the film depends on the radical/radical cation equilibrium. The potentials where the most electroactive species are formed have been determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of post-consumer poly(ethylene terephthalate) with aqueous solutions of sulfuric acid 7.5M was investigated in terms of temperature, time and particle size. The reaction extent reached 80% in four days at 100 degrees C and 90% in 5 hours at 135 degrees C. TPA obtained was purified and considered in the same level of quality of the commercial one after tests of elemental analysis, particle size and color. It was concluded that the hydrolysis occurred preferentially at the chain ends and superficially, having as controller mechanism the acid diffusion into the polymer structure. The shrinking-core model can explain the reaction kinetics.