342 resultados para OSTEOGENESIS IMPERFECTA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bonesialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model. © 2005 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (hMSC) chondrogenesis. We combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in hMSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce hMSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.

Following this, we modified this anti-inflammatory engineered cartilage to incorporate rabbit MSCs and evaluated this therapeutic strategy in a pilot study in vivo in rabbit osteochondral defects. Rabbits were fed a custom doxycycline diet to induce gene expression in engineered cartilage implanted in the joint. Serum and synovial fluid were collected and the levels of doxycycline and inflammatory mediators were measured. Rabbits were euthanized 3 weeks following surgery and tissues were harvested for analysis. We found that doxycycline levels in serum and synovial fluid were too low to induce strong overexpression of hIL-1Ra in the joint and hIL-1Ra was undetectable in synovial fluid via ELISA. Although hIL-1Ra expression in the first few days local to the site of injury may have had a beneficial effect, overall a higher doxycycline dose and more readily transduced cell population would improve application of this therapy.

In addition to the 3D woven PCL scaffold, cartilage-derived matrix scaffolds have recently emerged as a promising option for cartilage tissue engineering. Spatially-defined, biomaterial-mediated lentiviral gene delivery of tunable and inducible morphogenetic transgenes may enable guided differentiation of hMSCs into both cartilage and bone within CDM scaffolds, enhancing the ability of the CDM scaffold to provide chondrogenic cues to hMSCs. In addition to controlled production of anti-inflammatory proteins within the joint, in situ production of chondro- and osteo-inductive factors within tissue-engineered cartilage, bone, or osteochondral tissue may be highly advantageous as it could eliminate the need for extensive in vitro differentiation involving supplementation of culture media with exogenous growth factors. To this end, we have utilized controlled overexpression of transforming growth factor-beta 3 (TGF-β3), bone morphogenetic protein-2 (BMP-2) or a combination of both factors, to induce chondrogenesis, osteogenesis, or both, within CDM hemispheres. We found that TGF-β3 overexpression led to robust chondrogenesis in vitro and BMP-2 overexpression led to mineralization but not accumulation of type I collagen. We also showed the development of a single osteochondral construct by combining tissues overexpressing BMP-2 (hemisphere insert) and TGF-β3 (hollow hemisphere shell) and culturing them together in the same media. Chondrogenic ECM was localized in the TGF-β3-expressing portion and osteogenic ECM was localized in the BMP-2-expressing region. Tissue also formed in the interface between the two pieces, integrating them into a single construct.

Since CDM scaffolds can be enzymatically degraded just like native cartilage, we hypothesized that IL-1 may have an even larger influence on CDM than PCL tissue-engineered constructs. Additionally, anti-inflammatory engineered cartilage implanted in vivo will likely affect cartilage and the underlying bone. There is some evidence that osteogenesis may be enhanced by IL-1 treatment rather than inhibited. To investigate the effects of an inflammatory environment on osteogenesis and chondrogenesis within CDM hemispheres, we evaluated the ability of IL-1Ra-expressing or control constructs to undergo chondrogenesis and osteogenesis in the prescence of IL-1. We found that IL-1 prevented chondrogenesis in CDM hemispheres but did not did not produce discernable effects on osteogenesis in CDM hemispheres. IL-1Ra-expressing CDM hemispheres produced robust cartilage-like ECM and did not upregulate inflammatory mediators during chondrogenic culture in the presence of IL-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decellularized adipose tissue (DAT) is a promising biomaterial for soft tissue regeneration, and it provides a highly conducive microenvironment for human adipose-derived stem/stromal cell (ASC) attachment, proliferation, and adipogenesis. This thesis focused on developing techniques to fabricate 3-D bioscaffolds from enzymatically-digested DAT as platforms for ASC culture and delivery in adipose tissue engineering and large-scale ASC expansion. Initial work investigated chemically crosslinked microcarriers fabricated from pepsin-digested DAT as injectable adipo-inductive substrates for ASCs. DAT microcarriers highly supported ASC adipogenesis compared to gelatin microcarriers in a CELLSPIN system, as confirmed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, lipid accumulation, and endpoint RT-PCR. ASCs cultured on DAT microcarriers in proliferation medium also had elevated PPARγ, C/EBPα, and LPL expression which suggested adipo-inductive properties. In vivo testing of the DAT microcarriers exhibited stable volume retention and enhanced cellular infiltration, tissue remodeling, and angiogenesis. Building from this work, non-chemically crosslinked porous foams and bead foams were fabricated from α-amylase-digested DAT for soft tissue regeneration. Foams were stable and strongly supported ASC adipogenesis based on GPDH activity and endpoint RT-PCR. PPARγ, C/EBPα, and LPL expression in ASCs cultured on the foams in proliferation media indicated adipo-inductive properties. Foams with Young’s moduli similar to human fat also influenced ASC adipogenesis by enhanced GPDH activity. In vivo adipogenesis accompanied by a potent angiogenic response and rapid resorption showed their potential use in wound healing applications. Finally, non-chemically crosslinked porous microcarriers synthesized from α-amylase-digested DAT were investigated for ASC expansion. DAT microcarriers remained stable in culture and supported significantly higher ASC proliferation compared to Cultispher-S microcarriers in a CELLSPIN system. ASC immunophenotype was preserved for all expanded groups, with reduced adhesion marker expression under dynamic conditions. DAT microcarrier expansion upregulated ASC expression of early adipogenic (PPARγ, LPL) and chondrogenic (COMP) markers without inducing a mature phenotype. DAT microcarrier expanded ASCs also showed similar levels of adipogenesis and osteogenesis compared to Cultispher-S despite a significantly higher population fold-change, and had the highest level of chondrogenesis among all groups. This study demonstrates the promising use of DAT microcarriers as a clinically relevant strategy for ASC expansion while maintaining multilineage differentiation capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Amelogénese Imperfeita é uma anomalia hereditária que interfere no desenvolvimento do esmalte, pode variar em seu grau de intensidade, podendo afetar o esmalte tanto na sua qualidade, quanto na sua quantidade e em ambas as dentições. Existem pelo menos catorze subtipos diferentes de amelogénese imperfeita, sendo as do tipo hipoplásico, hipomaturado, hipocalcificado e hipoplásico ou hipomaturado com taurodontia segundo o seu fenótipo e quinze subtipos, segundo o seu modo de transmissão. Segundo a literatura, os pacientes com amelogénese imperfeita, independentemente do subtipo presente, apresentam complicações orais semelhantes: estética dentária comprometida, sensibilidade dentária e diminuição da dimensão vertical de oclusão. O tratamento destes pacientes assume um papel relevante, na medida em que requer cuidados especiais, já que esta doença acarreta, por norma, problemas psicológicos e interfere com o autoestima do individuo. É notória, atualmente, uma oferta variada de opções reabilitadoras ao dispor do Médico Dentista, que ajudarão o mesmo a restabelecer a estética e função. Os tratamentos são variados e por vezes complexos, podem ser desenvolvidos de forma conservadora ou invasiva. Contudo, a escolha do melhor tratamento será consequência da gravidade da patologia e de fatores inerentes ao próprio paciente. Neste estudo, abordamos as facetas, como uma alternativa reabilitadora, que com o avanço e melhorias na área da Dentisteria Estética, nomeadamente no que diz respeito à adesão à dentina, parecem ser uma opção credível. Assim, o objetivo desta dissertação é demonstrar e elucidar a reabilitação dos defeitos associados a esta doença com a utilização de facetas diretas e indiretas. Foram efetuadas pesquisas e consulta de livros, monografias, dissertações, artigos em base de dados como o Pubmed/Medline, para que conseguíssemos realizar uma discussão sobre o mesmo tema e desta forma encontrar uma adequada resposta a todas as nossas inquietações sobre esta questão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tooth loss is a common result of a variety of oral diseases due to physiological causes, trauma, genetic disorders, and aging and can lead to physical and mental suffering that markedly lowers the individual’s quality of life. Tooth is a complex organ that is composed of mineralized tissues and soft connective tissues. Dentin is the most voluminous tissue of the tooth and its formation (dentinogenesis) is a highly regulated process displaying several similarities with osteogenesis. In this study, gelatin, thermally denatured collagen, was used as a promising low-cost material to develop scaffolds for hard tissue engineering. We synthetized dentin-like scaffolds using gelatin biomineralized with magnesium-doped hydroxyapatite and blended it with alginate. With a controlled freeze-drying process and alginate cross-linking, it is possible to obtain scaffolds with microscopic aligned channels suitable for tissue engineering. 3D cell culture with mesenchymal stem cells showed the promising properties of the new scaffolds for tooth regeneration. In detail, the chemical–physical features of the scaffolds, mimicking those of natural tissue, facilitate the cell adhesion, and the porosity is suitable for long-term cell colonization and fine cell–material interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of functional, vascularized tissues is a key challenge for the field of tissue engineering. Before clinical implantations of tissue engineered bone constructs can succeed, in vitro fabrication needs to address limitations in large-scale tissue development, including controlled osteogenesis and an inadequate vasculature network to prevent necrosis of large constructs. The tubular perfusion system (TPS) bioreactor is an effective culturing method to augment osteogenic differentiation and maintain viability of human mesenchymal stem cell (hMSC)-seeded scaffolds while they are developed in vitro. To further enhance this process, we developed a novel osteogenic growth factors delivery system for dynamically cultured hMSCs using microparticles encapsulated in three-dimensional alginate scaffolds. In light of this increased differentiation, we characterized the endogenous cytokine distribution throughout the TPS bioreactor. An advantageous effect in the ‘outlet’ portion of the uniaxial growth chamber was discovered due to the system’s downstream circulation and the unique modular aspect of the scaffolds. This unique trait allowed us to carefully tune the differentiation behavior of specific cell populations. We applied the knowledge gained from the growth profile of the TPS bioreactor to culture a high-volume bone composite in a 3D-printed femur mold. This resulted in a tissue engineered bone construct with a volume of 200cm3, a 20-fold increase over previously reported sizes. We demonstrated high viability of the cultured cells throughout the culture period as well as early signs of osteogenic differentiation. Taking one step closer toward a viable implant and minimize tissue necrosis after implantation, we designed a composite construct by coculturing endothelial cells (ECs) and differentiating hMSCs, encouraging prevascularization and anastomosis of the graft with the host vasculature. We discovered the necessity of cell to cell proximity between the two cell types as well as preference for the natural cell binding capabilities of hydrogels like collagen. Notably, the results suggested increased osteogenic and angiogenic potential of the encapsulated cells when dynamically cultured in the TPS bioreactor, suggesting a synergistic effect between coculture and applied shear stress. This work highlights the feasibility of fabricating a high-volume, prevascularized tissue engineered bone construct for the regeneration of a critical size defect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente artículo se discuten los alcances de la estrategia liberal en el caso de la economía costarricense, principalmente desde la perspectiva de su paradoja de realización; es decir, la conformación de condiciones implica imposibilidad de objetivos. Como argumento de fondo se explora el hecho de que la vigencia del paradigma de la competencia imperfecta (con un claro dominio de monopolios y oligopolios), fortalecida con el proceso aperturista, no crea condiciones para el advenimiento del paradigma de la competencia perfecta, condición esencial para el logro de objetivos de la propuesta liberal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la actualidad, los videojuegos no llegan a alcanzar el nivel de realismo esperado debido, entre otros factores, al trato que se hace del conocimiento de sus personajes. En muchas ocasiones estos personajes no son capaces de actualizar su conocimiento acerca de lo ocurrido convenientemente, dando lugar a situaciones extrañas. Este trabajo aborda el problema de la gestión de conocimiento, el razonamiento y la comunicación entre personajes de videojuego controlados por computador, algo que la industria del entretenimiento interactivo está muy interesada en conseguir para aumentar la jugabilidad y la credibilidad de sus obras. Para explorar las posibilidades de construir personajes con una inteligencia artificial capaz de extraer conocimiento sobre lo que perciben en su entorno, y propagarlo a otros de manera realista, imperfecta o incluso malintencionada, se propone un escenario ficticio propio de un videojuegos multijugador de detectives, donde además de participantes humanos, vamos a explorar la posibilidad de implementar participantes automáticos. El escenario, de temática fantástica y humor, consiste básicamente en un laberinto de un laboratorio donde un grupo de ratones pueden moverse y realizar acciones por la noche. A la mañana siguiente el científico del laboratorio inspeccionará el estado del laberinto e intentará averiguar ratones han causado desperfectos para castigarlos. En este trabajo explicamos el proceso llevado a cabo para modelar este juego y representar computacionalmente el conocimiento y los pasos de razonamiento que deben dar los participantes para jugar de forma plausible al mismo. Con este modelo sentamos las bases de un armazón que permita explorar diferentes estrategias de resolución de problemas ante toda una familia de escenarios posibles donde hay personajes que intercambian información tratando de maximizar su puntuación en el juego. Finalmente se ofrece una solución al problema con ratones que son conscientes de las acciones que pueden acarrear consecuencias que han realizado y por lo tanto mienten en sus declaraciones para evitar ser castigados. Los ratones inocentes pretenden sacar a la luz la verdad. El científico sigue un método de investigación que le lleva a dar con un ratón sospechoso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As estruturas dentárias são revestidas pelo esmalte dentário. O esmalte é um tecido de alta dureza, avascular e predominantemente branco. No entanto, distingue-se dos outros tecidos mineralizados do corpo pela sua incapacidade de remodelação. Devido a esse facto qualquer alteração que ocorra, quer ao longo da vida, quer no seu desenvolvimento fica, permanentemente, registada (Seow, 1997). Procurou-se nesta monografia aprofundar os conhecimentos sobre os mais comuns defeitos de desenvolvimento do esmalte existentes, assim como o respetivo tratamento. Para a realização desta monografia foram utilizados os seguintes motores de busca B-on, PubMed, Science Direct e Sci-elo, para a realização da pesquisa de informação, aplicando-se um critério de seleção temporal dos últimos 10 anos. As palavras-chaves e combinações de palavras utilizadas nos motores de busca referidos para a realização da pesquisa foram “Enamel”, “Enamel Development”, “Enamel Defects”, “Amelogenisis Imperfecta”, “Hypoplasia”. Dos 300 artigos encontrados nesta pesquisa, foram selecionados 68. O desenvolvimento dos tecidos dentários é um processo complexo conhecido por odontogénese, podendo ser simplisticamente dividido em três fases Fase de Botão, Fase de Capuz e por último a Fase de Campânula (Thesleff et al.,2009) Existem inúmeros defeitos de desenvolvimento do esmalte registados na literatura, não sendo mesmo possível em muitos casos enquadrar indubitavelmente o referido defeito numa categoria, ou até atribuir-lhe uma designação (Seow, 1997). Optou-se pela sua relevância e epidemiologia abordar nesta monografia os seguintes defeitos: Defeitos de desenvolvimento do esmalte; Opacidades; Opacidade difusa; Hipoplasia; Amelogenese imperfeita e todas as suas categorias; Fluorose e manchas por tetraciclinas assim como os seus respectivos tratamentos. Os defeitos de desenvolvimento de esmalte apresentam diversas características próprias e outras semelhantes entre si, verificando-se assim diversas possibilidades de tratamentos a realizar, uns mais invasivos e outros menos, que vão desde microabrasões na superfície do esmalte, à colocação de cerâmicas, dependendo sempre da preferência do paciente e do seu poder socioeconómico (Azevedo DT et al., 2011). Conclui-se que apesar de todos os problemas que acarretam quer a nível estético quer a nível funcional para os indivíduos nos quais não existe uma grande gravidade das lesões esses casos podem ser resolvidos por um Médico Dentista generalista desde que este tenha o conhecimento adequado dos protocolos de atuação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(aryl-ether-ether-ketone) (PEEK) is a semi crystalline polymer which exhibits properties that make it an attractive choice for use as an implant material. It displays natural radiolucency, and MRI compatibility, as well as good chemical and sterilization resistance, both of which make it of particular interest in orthopaedic implants. However, PEEK has demonstrated poor cellular adhesion both in vitro and in vivo. This is problematic as implant surfaces that do not develop a layer of adhesive cells are at risk of undergoing fibrous encapsulation, which in turn leads to lack of a strong interface between the implant device and the patient tissue, which can in turn lead to failure of the implant and revision surgery . As incorporating nanotopography into a polymer surface has been demonstrated to be able to direct the differentiation behaviour of stem cells, a possible solution to PEEKs underlying issues with poor cellular response would be to incorporate specific nanoscale topography into the material surface through injection moulding, and then analysing if this is a viable method for addressing PEEKs issues with cellular response. In addition to nanoscale topography, the experimental PEEK surfaces were treated with oxygen plasma to address the underlying cytophobicity of the material. As this type of treatment has been documented to be capable of etching the PEEK surface, experiments were carried out to quantify the effect of this treatment, both on the ability of cells to adhere to the PEEK surface, as well as the effect it has upon the nanotopography present at the PEEK surface. The results demonstrated that there were a range of plasma treatments which would significantly improve the ability of cells to adhere to the PEEK surface without causing unacceptable damage to the nanotopography. Three different types of cells with osteogenic capacity were tested with the PEEK surfaces to gauge the ability of the topography to alter their behaviour: SAOS-2, osteoprogenitors and 271+ MSCs. Due to PEEKs material properties (it is non transparent, exhibits birefringence and is strongly autofluorescent) a number of histological techniques were used to investigate a number of different stages that take place in osteogenesis. The different cell types did display slightly different responses to the topographies. The SAOS-2 cells cultured on surfaces that had been plasma treated for 2 minutes at 200W had statistically significantly higher levels of von Kossa staining on the NSQ surface compared to the planar surface, and the same experiment employing alizarin red staining, showed a statistically significantly lower level of staining on the SQ surface compared to the planar surface. Using primary osteoprogenitor cells designed to look into if whether or not the presence of nanotopography effected the osteogenic response of these cells, we saw a lack of statistically significant difference produced by the surfaces investigated. By utilising HRP based immunostaining, we were able to investigate, in a quantitative fashion, the production of the two osteogenic markers osteopontin and osteocalcin by cells. When stained for osteocalcin, the SQ nanotopography had total percentage of the surface with stained material, average area and average perimeter all statistically significantly lower than the planar surface. For the cells that were stained for osteopontin, the SQ nanotopgraphy had a total percentage of the surface with stained material, average area and average perimeter all highly statistically significantly lower than those of the planar surface. Additionally, for this marker the NSQ nanotopography had average areas and average perimeters that were highly significantly higher than those of the planar surface. There were no significant differences for any of the values investigated for the 271+ MSC’s When plasma treatment was varied, the SAOS-2 cells demonstrated an overall trend i.e. increasing the energy of plasma treatment in turn leads to an increase in the overall percentage of staining. A similar experiment employing stem cells isolated from human bone marrow instead of SAOS-2 cells showed that for polycarbonate surfaces , used as a control, mineralization is statistically significantly higher on the NSQ nanopattern compared to the planar surface, whereas on the PEEK surfaces we observe the opposite trend i.e. the NSQ nanotopography having a statistically significantly lower amount of mineralization compared to the planar surface at the 200W 2min and 30W 1min plasma treatments. The standout trend from the PEEK results in this experiment was that the statistically significant differences on the PEEK substrates were clustered around the lower energy plasma treatments, which could suggest that the plasma treatment disrupted a function of the nanotopograhy which is why, as the energy increases, there are less statistically significant differences between the NSQ nanotopography and the Planar surface This thesis documents the response of a number of different types of cells to specific nanoscale topographies incorporated into the PEEK surface which had been treated with oxygen plasma. It outlines the development of a number of histological methods which measure different aspects of osteogenesis, and were selected to both work with PEEK, and produce quantitative results through the use of Cell Profiler. The methods that have been employed in this body of work would be of interest to other researchers working with this material, as well as those working with similarly autofluorescent materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente investigación tiene como objetivo principal identificar los acuerdos de apoyo político mutuo entre los candidatos al Concejo y los candidatos a la Alcaldía que influyeron en la captación de votos durante los comicios para la Alcaldía Mayor de Bogotá y el Concejo de Bogotá durante 2007, 2011 y 2015. De esta manera, sostiene que los resultados electorales de estos comicios se relacionan de una manera imperfecta. Por ello, se examinará la relación entre los resultados electorales de la Alcaldía y el Concejo de Bogotá con el fin de hallar correlaciones, transferencias de votos y patrones de comportamiento espaciales. Finalmente, esta investigación establecerá relaciones entre los índices de participación y la presencia de redes clientelistas en las UPZ de Bogotá. Se utilizará el método de investigación cualitativo, mediante trabajo de archivo y cartografía electoral, utilizando principalmente fuentes primarias.