979 resultados para ORGANIC-SYNTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of four novel n-type molecules has been synthesized. Unlike previous approaches, the end group of these molecules was fixed and the molecular core was varied. The resulting materials were thoroughly analyzed. Electronic properties were derived from photoemission spectroscopy, optical properties were derived with the help of optical spectroscopy, and the structure of thin films on Au(111) was derived by scanning tunneling microscopy (STM). In addition, prototypical organic field-effect transistors (OFETs) (forming n-channels in OFETs) have been fabricated and tested. The correlation between the device performance of the respective OFETs (i.e., electron mobility) and their electronic as well as structural properties was investigated. It turned out that a combination of beneficial electronic and structural properties provides the best results. These findings are important for the design of new materials for future device applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and β-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm2/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm2/(V·s) for polymer thin films even without thermal annealing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have synthesized two novel diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) copolymers poly{3,6-dithiophene-2-yl-2,5-di(2-octyl)- pyrrolo[3,4-c]pyrrole-1,4-dione-alt-1,5-bis(dodecyloxy)naphthalene} (PDPPT-NAP) and poly{3,6-dithiophene-2-yl-2,5-di(2-butyldecyl)-pyrrolo[3,4-c]pyrrole-1,4- dione-alt-2-dodecyl-2H-benzo[d][1,2,3]triazole} (PDPPT-BTRZ) via direct arylation organometallic coupling. Both copolymers contain a common electron withdrawing DPP building block which is combined with electron donating alkoxy naphthalene and electron withdrawing alkyl-triazole comonomers. The number average molecular weight (Mn) determined by gel permeation chromatography (GPC) for polymer PDPPT-NAP is around 23 400 g mol-1 whereas for polymer PDPPT-BTRZ it is 18 600 g mol-1. The solid state absorption spectra of these copolymers show a wide range of absorption from 400 nm to 1000 nm with optical band gaps calculated from absorption cut off values in the range of 1.45-1.30 eV. The HOMO values determined for PDPPT-NAP and PDPPT-BTRZ copolymers from photoelectron spectroscopy in air (PESA) data are 5.15 eV and 5.25 eV respectively. These polymers exhibit promising p-channel and ambipolar behaviour when used as an active layer in organic thin-film transistor (OTFT) devices. The highest hole mobility measured for polymer PDPPT-NAP is around 0.0046 cm2 V-1 s-1 whereas the best ambipolar performance was calculated for PDPPT-BTRZ with a hole and electron mobility of 0.01 cm2 V-1 s-1 and 0.006 cm2 V-1 s-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Furan substituted diketopyrrolopyrrole (DBF) combined with benzothiadiazole based polymer semiconductor PDPP-FBF has been synthesized and evaluated as an ambipolar semiconductor in organic thin-film transistors. Hole and electron mobilities as high as 0.20 cm 2 V -1 s -1 and 0.56 cm 2 V -1 s -1, respectively, are achieved for PDPP-FBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fluorenone based alternating copolymer (PFN-DPPF) with a furan based fused aromatic moiety has been designed and synthesized. PFN-DPPF exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm2 V-1 s-1 in air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterojunction organic photovoltaics have been the subject of intensive academic interest over the past two decades, and significant commercial efforts have been directed towards this area with the vision of developing the next generation of low-cost solar cells. Materials development has played a vital role in the dramatic improvement of organic solar cell performance in recent years, and this is driven primarily by the advancement of p-type semiconductors as donor materials. With the highest performing solar cells today dominated by acceptors based on members of the fullerene family, much less attention has been devoted to other classes of n-type acceptors. In this review, we will provide an overview of the progress in the synthesis, characterization and implementation of the various classes of non-fullerenebased n-type organic acceptors for photovoltaic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO-LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1:2 donor-acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm-2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of alternating copolymers of tetraalkylindenofluorene with bithiophene and terthiophene using Suzuki polycondensation route is reported. We report on the optical and electrochemical properties of these copolymers. AFM analysis of the microscopic morphology of thin deposits showed that the copolymer with terthiophene units produced the more ordered films, with well-defined fibrillar structures, resulting from highly-regular dense packing due to strong π-π interchain interactions, in contrast to the amorphous bithiophene copolymer. Upon testing these materials in FETs the terthienyl copolymers displayed the higher charge mobilities among the studied compounds, with values of over 10-4 cm2 V-1 s-1 being obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterisation of 2,5-bis(5′-hexyl-[2,2′- bithiophen]-5-yl)pyridine (Th4PY) and its use as a blue emitter in organic light emitting diodes (OLEDs) is reported. Th4PY was synthesised in high yield using a straightforward Suzuki coupling route with commercially available starting materials. As Th4PY is both soluble and has low molecular weight, blue OLEDs were fabricated using both spin-coating and vacuum deposition thin film processing techniques to study the effect of processing on device performance. OLED devices using a spin-coated layer consisting of 4′,4′′- tris(N-carbazolyl)triphenylamine (TCTA) and 2-(4-biphenylyl)-5-(4-tert- butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix together with Th4PY as emitter exhibited highly efficient sky-blue emission with a low turn-on voltage of 3V, a maximum brightness close to 15000cdm-2 at 8V, and a maximum luminous efficiency of 7.4cdA -1 (6.3lmW -1) with CIE coordinates of x≤0.212, y≤0.320. The device performance characteristics are compared using various matrices and processing techniques. The promising sky-blue OLED performance, solution processability, and ambient stability make Th4PY a promising blue emitter for application in OLEDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the synthesis, characterization, and organic thin-film transistor (OTFT) mobilities of 4,7-bis(5-(5-hexylthiophen-2-yl)thiophen-2-yl) benzo[1,2,5]thiadiazole (DH-BTZ-4T). DH-BTZ-4T was prepared in one high-yield step from commercially available materials using Suzuki chemistry and purified by column chromatography. OTFTs with hole mobilities of 0.17 cm2/(Vs) and on/off current ratios of 1 × 105 were prepared from DH-BTZ-4T active layers deposited by vacuum deposition. As DH-BTZ-4T is soluble in common solvents, solution processed devices were also prepared by spin coating yielding preliminary mobilities of 6.0 × 10-3 cm 2/(Vs). The promising mobilities and low band gap (1.90 eV) coupled with solution processability and ambient stability makes this material an excellent candidate for application in organic electronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the design and synthesis of isoindigo based low band gap polymer semiconductors, poly{N,N′-(2-octyldodecyl)-isoindigo-alt- naphthalene} (PISD-NAP) and poly{N,N′-(2-octyldodecyl)-isoindigo-alt- anthracene} (PISD-ANT). A series of donor-acceptor (D-A) copolymers can be prepared where donor and acceptor conjugated blocks can be attached alternately using organometallic coupling. In these polymers, an isoindigo dye acceptor moiety has been attached alternately with naphthalene and anthracene donor comonomer blocks by Suzuki coupling. PISD-NAP and PISD-ANT exhibit excellent solution processibility and good film-forming properties. Gel permeation chromatography exhibits a higher molecular mass with lower polydispersity. UV-vis-NIR absorption of these polymers exhibits a wide absorption band ranging from 300 nm to 800 nm, indicating the low band gap nature of the polymers. Optical band gaps calculated from the solid state absorption cutoff value for PISD-NAP and PISD-ANT are around 1.80 eV and 1.75 eV, respectively. Highest occupied molecular orbital (HOMO) values calculated respectively for PISD-NAP and PISD-ANT thin films on glass substrate by photoelectron spectroscopy in air (PESA) are 5.66 eV and 5.53 eV, indicative of the good stability of these materials in organic electronic device applications. These polymers exhibit p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices in ambient conditions. The highest hole mobility of 0.013 cm2 V-1 s-1 is achieved in top contact and bottom-gate OTFT devices for PISD-ANT, whereas polymer PISD-NAP exhibited a hole mobility of 0.004 cm2 V -1 s-1. When these polymer semiconductors were used as a donor and PC71BM as an acceptor in OPV devices, the highest power conversion efficiency (PCE) of 1.13% is obtained for the PISD-ANT polymer.