Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors


Autoria(s): Sonar, Prashant; Tan, Huei-Shuan; Sun, Shuangyong; Lam, Yeng Ming; Dodabalapur, Ananth
Data(s)

2013

Resumo

In this paper, we report the design and synthesis of isoindigo based low band gap polymer semiconductors, poly{N,N′-(2-octyldodecyl)-isoindigo-alt- naphthalene} (PISD-NAP) and poly{N,N′-(2-octyldodecyl)-isoindigo-alt- anthracene} (PISD-ANT). A series of donor-acceptor (D-A) copolymers can be prepared where donor and acceptor conjugated blocks can be attached alternately using organometallic coupling. In these polymers, an isoindigo dye acceptor moiety has been attached alternately with naphthalene and anthracene donor comonomer blocks by Suzuki coupling. PISD-NAP and PISD-ANT exhibit excellent solution processibility and good film-forming properties. Gel permeation chromatography exhibits a higher molecular mass with lower polydispersity. UV-vis-NIR absorption of these polymers exhibits a wide absorption band ranging from 300 nm to 800 nm, indicating the low band gap nature of the polymers. Optical band gaps calculated from the solid state absorption cutoff value for PISD-NAP and PISD-ANT are around 1.80 eV and 1.75 eV, respectively. Highest occupied molecular orbital (HOMO) values calculated respectively for PISD-NAP and PISD-ANT thin films on glass substrate by photoelectron spectroscopy in air (PESA) are 5.66 eV and 5.53 eV, indicative of the good stability of these materials in organic electronic device applications. These polymers exhibit p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices in ambient conditions. The highest hole mobility of 0.013 cm2 V-1 s-1 is achieved in top contact and bottom-gate OTFT devices for PISD-ANT, whereas polymer PISD-NAP exhibited a hole mobility of 0.004 cm2 V -1 s-1. When these polymer semiconductors were used as a donor and PC71BM as an acceptor in OPV devices, the highest power conversion efficiency (PCE) of 1.13% is obtained for the PISD-ANT polymer.

Identificador

http://eprints.qut.edu.au/75256/

Publicador

Royal Society of Chemistry

Relação

DOI:10.1039/c2py20942j

Sonar, Prashant, Tan, Huei-Shuan, Sun, Shuangyong, Lam, Yeng Ming, & Dodabalapur, Ananth (2013) Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors. Polymer Chemistry, 4(6), pp. 1983-1994.

Direitos

Copyright 2013 The Royal Society of Chemistry

Fonte

School of Chemistry, Physics & Mechanical Engineering; Science & Engineering Faculty

Palavras-Chave #Acceptor moieties #Ambient conditions #Co-monomer #Cut-off value #Donor and acceptor conjugated blocks #Donor-acceptors #Film-forming properties #Glass substrates #Good stability #Highest occupied molecular orbital #Isoindigo #Low band gap #Low bandgap polymers #Organic electronic devices #Organic thin film transistors #P channels #Polymer semiconductors #Power conversion efficiencies #Solid-state absorption #Solution processibility #Suzuki couplings #Top contact #Transport characteristics #UV-Vis-NIR absorption #Anthracene #Conversion efficiency #Copolymers #Energy gap #Gel permeation chromatography #Hole mobility #Naphthalene #Organic field effect transistors #Organometallics #Photoelectron spectroscopy #Semiconductor devices #Substrates #Thin film transistors #Polymers
Tipo

Journal Article