940 resultados para Natural Language Processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of the present thesis was to investigate the production of code-switched utterances in bilinguals’ speech production. This study investigates the availability of grammatical-category information during bilingual language processing. The specific aim is to examine the processes involved in the production of Persian-English bilingual compound verbs (BCVs). A bilingual compound verb is formed when the nominal constituent of a compound verb is replaced by an item from the other language. In the present cases of BCVs the nominal constituents are replaced by a verb from the other language. The main question addressed is how a lexical element corresponding to a verb node can be placed in a slot that corresponds to a noun lemma. This study also investigates how the production of BCVs might be captured within a model of BCVs and how such a model may be integrated within incremental network models of speech production. In the present study, both naturalistic and experimental data were used to investigate the processes involved in the production of BCVs. In the first part of the present study, I collected 2298 minutes of a popular Iranian TV program and found 962 code-switched utterances. In 83 (8%) of the switched cases, insertions occurred within the Persian compound verb structure, hence, resulting in BCVs. As to the second part of my work, a picture-word interference experiment was conducted. This study addressed whether in the case of the production of Persian-English BCVs, English verbs compete with the corresponding Persian compound verbs as a whole, or whether English verbs compete with the nominal constituents of Persian compound verbs only. Persian-English bilinguals named pictures depicting actions in 4 conditions in Persian (L1). In condition 1, participants named pictures of action using the whole Persian compound verb in the context of its English equivalent distractor verb. In condition 2, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically closely related English distractor verb. In condition 3, the whole Persian compound verb was produced in the context of a semantically unrelated English distractor verb. In condition 4, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically unrelated English distractor verb. The main effect of linguistic unit was significant by participants and items. Naming latencies were longer in the nominal linguistic unit compared to the compound verb (CV) linguistic unit. That is, participants were slower to produce the nominal constituent of compound verbs in the context of a semantically closely related English distractor verb compared to producing the whole compound verbs in the context of a semantically closely related English distractor verb. The three-way interaction between version of the experiment (CV and nominal versions), linguistic unit (nominal and CV linguistic units), and relation (semantically related and unrelated distractor words) was significant by participants. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to the response latencies in the semantically related CV linguistic unit. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to response latencies in the semantically unrelated nominal linguistic unit. Both the analysis of the naturalistic data and the results of the experiment revealed that in the case of the production of the nominal constituent of BCVs, a verb from the other language may compete with a noun from the base language, suggesting that grammatical category does not necessarily provide a constraint on lexical access during the production of the nominal constituent of BCVs. There was a minimal context in condition 2 (the nominal linguistic unit) in which the nominal constituent was produced in the presence of its corresponding light verb. The results suggest that generating words within a context may not guarantee that the effect of grammatical class becomes available. A model is proposed in order to characterize the processes involved in the production of BCVs. Implications for models of bilingual language production are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a categorization module for improving the performance of a Spanish into Spanish Sign Language (LSE) translation system. This categorization module replaces Spanish words with associated tags. When implementing this module, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not relevant in the translation process. The categorization module has been incorporated into a phrase-based system and a Statistical Finite State Transducer (SFST). The evaluation results reveal that the BLEU has increased from 69.11% to 78.79% for the phrase-based system and from 69.84% to 75.59% for the SFST.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the design, development and field evaluation of a machine translation system from Spanish to Spanish Sign Language (LSE: Lengua de Signos Española). The developed system focuses on helping Deaf people when they want to renew their Driver’s License. The system is made up of a speech recognizer (for decoding the spoken utterance into a word sequence), a natural language translator (for converting a word sequence into a sequence of signs belonging to the sign language), and a 3D avatar animation module (for playing back the signs). For the natural language translator, three technological approaches have been implemented and evaluated: an example-based strategy, a rule-based translation method and a statistical translator. For the final version, the implemented language translator combines all the alternatives into a hierarchical structure. This paper includes a detailed description of the field evaluation. This evaluation was carried out in the Local Traffic Office in Toledo involving real government employees and Deaf people. The evaluation includes objective measurements from the system and subjective information from questionnaires. The paper details the main problems found and a discussion on how to solve them (some of them specific for LSE).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El presente trabajo desarrolla un servicio REST que transforma frases en lenguaje natural a grafos RDF. Los grafos generados son grafos dirigidos, donde los nodos se forman con los sustantivos o adjetivos de las frases, y los arcos se forman con los verbos. Se utiliza dentro del proyecto p-medicine para dar soporte a las siguientes funcionalidades: Búsquedas en lenguaje natural: actualmente la plataforma p-medicine proporciona un interfaz programático para realizar consultas en SPARQL. El servicio desarrollado permitiría generar esas consultas automáticamente a partir de frases en lenguaje natural. Anotaciones de bases de datos mediante lenguaje natural: la plataforma pmedicine incorpora una herramienta, desarrollada por el Grupo de Ingeniería Biomédica de la Universidad Politécnica de Madrid, para la anotación de bases de datos RDF. Estas anotaciones son necesarias para la posterior traducción de las bases de datos a un esquema central. El proceso de anotación requiere que el usuario construya de forma manual las vistas RDF que desea anotar, lo que requiere mostrar gráficamente el esquema RDF y que el usuario construya vistas RDF seleccionando las clases y relaciones necesarias. Este proceso es a menudo complejo y demasiado difícil para un usuario sin perfil técnico. El sistema se incorporará para permitir que la construcción de estas vistas se realice con lenguaje natural. ---ABSTRACT---The present work develops a REST service that transforms natural language sentences to RDF degrees. Generated graphs are directed graphs where nodes are formed with nouns or adjectives of phrases, and the arcs are formed with verbs. Used within the p-medicine project to support the following functionality: Natural language queries: currently the p-medicine platform provides a programmatic interface to query SPARQL. The developed service would automatically generate those queries from natural language sentences. Memos databases using natural language: the p-medicine platform incorporates a tool, developed by the Group of Biomedical Engineering at the Polytechnic University of Madrid, for the annotation of RDF data bases. Such annotations are necessary for the subsequent translation of databases to a central scheme. The annotation process requires the user to manually construct the RDF views that he wants annotate, requiring graphically display the RDF schema and the user to build RDF views by selecting classes and relationships. This process is often complex and too difficult for a user with no technical background. The system is incorporated to allow the construction of these views to be performed with natural language.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article explores one aspect of the processing perspective in L2 learning in an EST context: the processing of new content words, in English, of the type ‘cognates’ and ‘false friends’, by Spanish speaking engineering students. The paper does not try to offer a comprehensive overview of language acquisition mechanisms, but rather it is intended to review more narrowly how our conceptual systems, governed by intricately linked networks of neural connections in the brain, make language development possible, creating, at the same time, some L2 processing problems. The case of ‘cognates and false friends’ in specialised contexts is brought here to illustrate some of the processing problems that the L2 learner has to confront, and how mappings in the visual, phonological and semantic (conceptual) brain structures function in second language processing of new vocabulary. Resumen Este artículo pretende reflexionar sobre un aspecto de la perspectiva del procesamiento de segundas lenguas (L2) en el contexto del ICT: el procesamiento de palabras nuevas, en inglés, conocidas como “cognados” y “falsos amigos”, por parte de estudiantes de ingeniería españoles. No se pretende ofrecer una visión completa de los mecanismos de adquisición del lenguaje, más bien se intenta mostrar cómo nuestro sistema conceptual, gobernado por una complicada red de conexiones neuronales en el cerebro, hace posible el desarrollo del lenguaje, aunque ello conlleve ciertas dificultades en el procesamiento de segundas lenguas. El caso de los “cognados” y los “falsos amigos”, en los lenguajes de especialidad, se trae para ilustrar algunos de los problemas de procesamiento que el estudiante de una lengua extranjera tiene que afrontar y el funcionamiento de las correspondencias entre las estructuras visuales, fonológicas y semánticas (conceptuales) del cerebro en el procesamiento de nuevo vocabulario.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the application of language translation technologies for generating bus information in Spanish Sign Language (LSE: Lengua de Signos Española). In this work, two main systems have been developed: the first for translating text messages from information panels and the second for translating spoken Spanish into natural conversations at the information point of the bus company. Both systems are made up of a natural language translator (for converting a word sentence into a sequence of LSE signs), and a 3D avatar animation module (for playing back the signs). For the natural language translator, two technological approaches have been analyzed and integrated: an example-based strategy and a statistical translator. When translating spoken utterances, it is also necessary to incorporate a speech recognizer for decoding the spoken utterance into a word sequence, prior to the language translation module. This paper includes a detailed description of the field evaluation carried out in this domain. This evaluation has been carried out at the customer information office in Madrid involving both real bus company employees and deaf people. The evaluation includes objective measurements from the system and information from questionnaires. In the field evaluation, the whole translation presents an SER (Sign Error Rate) of less than 10% and a BLEU greater than 90%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En el presente Trabajo de Fin de Máster se ha realizado un análisis sobre las técnicas y herramientas de Generación de Lenguaje Natural (GLN), así como las modificaciones a la herramienta Simple NLG para generar expresiones en el idioma Español. Dicha extensión va a permitir ampliar el grupo de personas a las cuales se les transmite la información, ya que alrededor de 540 millones de personas hablan español. Keywords - Generación de Lenguaje Natural, técnicas de GLN, herramientas de GLN, Inteligencia Artificial, análisis, SimpleNLG.---ABSTRACT---In this Master's Thesis has been performed an analysis on techniques and tools for Natural Language Generation (NLG), also the Simple NLG tool has been modified in order to generate expressions in the Spanish language. This modification will allow transmitting the information to more people; around 540 million people speak Spanish. Keywords - Natural Language Generation, NLG tools, NLG techniques, Artificial Intelligence, analysis, SimpleNLG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is possible to view the relations between mathematics and natural language from different aspects. This relation between mathematics and language is not based on just one aspect. In this article, the authors address the role of the Subject facing Reality through language. Perception is defined and a mathematical theory of the perceptual field is proposed. The distinction between purely expressive language and purely informative language is considered false, because the subject is expressed in the communication of a message, and conversely, in purely expressive language, as in an exclamation, there is some information. To study the relation between language and reality, the function of ostensibility is defined and propositions are divided into ostensives and estimatives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research on semantic processing focused mainly on isolated units in language, which does not reflect the complexity of language. In order to understand how semantic information is processed in a wider context, the first goal of this thesis was to determine whether Swedish pre-school children are able to comprehend semantic context and if that context is semantically built up over time. The second goal was to investigate how the brain distributes attentional resources by means of brain activation amplitude and processing type. Swedish preschool children were tested in a dichotic listening task with longer children’s narratives. The development of event-related potential N400 component and its amplitude were used to investigate both goals. The decrease of the N400 in the attended and unattended channel indicated semantic comprehension and that semantic context was built up over time. The attended stimulus received more resources, processed the stimuli in more of a top-down manner and displayed prominent N400 amplitude in contrast to the unattended stimulus. The N400 and the late positivity were more complex than expected since endings of utterances longer than nine words were not accounted for. More research on wider linguistic context is needed in order to understand how the human brain comprehends natural language

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decade we have seen an exponential growth of functional imaging studies investigating multiple aspects of language processing. These studies have sparked an interest in applying some of the paradigms to various clinically relevant questions, such as the identification of the cortical regions mediating language function in surgical candidates for refractory epilepsy. Here we present data from a group of adult control participants in order to investigate the potential of using frequency specific spectral power changes in MEG activation patterns to establish lateralisation of language function using expressive language tasks. In addition, we report on a paediatric patient whose language function was assessed before and after a left hemisphere amygdalo-hippocampectomy. Our verb generation task produced left hemisphere decreases in beta-band power accompanied by right hemisphere increases in low beta-band power in the majority of the control group, a previously unreported phenomenon. This pattern of spectral power was also found in the patient's post-surgery data, though not her pre-surgery data. Comparison of pre and post-operative results also provided some evidence of reorganisation in language related cortex both inter- and intra-hemispherically following surgery. The differences were not limited to changes in localisation of language specific cortex but also changes in the spectral and temporal profile of frontal brain regions during verb generation. While further investigation is required to establish concordance with invasive measures, our data suggest that the methods described may serve as a reliable lateralisation marker for clinical assessment. Furthermore, our findings highlight the potential utility of MEG for the investigation of cortical language functioning in both healthy development and pathology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For more than forty years, research has been on going in the use of the computer in the processing of natural language. During this period methods have evolved, with various parsing techniques and grammars coming to prominence. Problems still exist, not least in the field of Machine Translation. However, one of the successes in this field is the translation of sublanguage. The present work reports Deterministic Parsing, a relatively new parsing technique, and its application to the sublanguage of an aircraft maintenance manual for Machine Translation. The aim has been to investigate the practicability of using Deterministic Parsers in the analysis stage of a Machine Translation system. Machine Translation, Sublanguage and parsing are described in general terms with a review of Deterministic parsing systems, pertinent to this research, being presented in detail. The interaction between machine Translation, Sublanguage and Parsing, including Deterministic parsing, is also highlighted. Two types of Deterministic Parser have been investigated, a Marcus-type parser, based on the basic design of the original Deterministic parser (Marcus, 1980) and an LR-type Deterministic Parser for natural language, based on the LR parsing algorithm. In total, four Deterministic Parsers have been built and are described in the thesis. Two of the Deterministic Parsers are prototypes from which the remaining two parsers to be used on sublanguage have been developed. This thesis reports the results of parsing by the prototypes, a Marcus-type parser and an LR-type parser which have a similar grammatical and linguistic range to the original Marcus parser. The Marcus-type parser uses a grammar of production rules, whereas the LR-type parser employs a Definite Clause Grammar(DGC).