939 resultados para Molecular mechanism
Resumo:
Establishment of a myogenic phenotype involves antagonism between cell proliferation and differentiation. The recent identification of the MyoD family of muscle-specific transcription factors provides opportunities to dissect at the molecular level the mechanisms through which defined cell type-specific transcription factors respond to environmental cues and regulate differentiation programs. This project is aimed at elucidation of the molecular mechanism whereby growth factors repress myogenesis. Initial studies demonstrated that nuclear oncogenes such as c-fos, junB and c-jun are immediate early genes that respond to serum and TGF-$\beta$. Using the muscle creatine kinase (MCK) enhancer linked to the reporter gene CAT as a marker for differentiation, we showed that transcriptional function of myogenin can be disrupted in the presence of c-Fos, JunB and cjun. In contrast, JunD, which shares DNA-binding specificity with JunB and c-Jun but is expressed constitutively in muscle cells, failed to show the inhibition. The repression by Fos and Jun is targeted at KE-2 motif, the same sequence that mediates myogenin-dependent activation and muscle-specific transactivation. Deletion analysis indicated that the transactivation domain of c-Jun at the N-terminus is responsible for the repression. Considering that myogenin is a phosphoprotein and cAMP and TPA are able to regulate myogenesis, we examined whether constitutively active protein kinase C (PKC) and protein kinase A (PKA) could substitute for exogenous growth factors and prevent transcription activation by myogenin. Indeed, the basic region of myogenin is phosphorylated by PKC at a threonine that is conserved in all members of the MyoD family. Phosphorylation at this site attenuates DNA binding activity of myogenin. Protein kinase A can also phosphorylate myogenin in a region adjacent to the DNA binding domain. However, phosphorylation at this site is insufficient to abrogate myogenin's DNA binding capacity, suggesting that PKA and PKC may affect myogenin transcriptional activity through different mechanisms. These findings provide insight into the mechanisms through which growth factor signals negatively regulate the muscle differentiation program and contribute to an understanding of signal transducing pathways between the cell membrane and nucleus. ^
Resumo:
In this thesis, we investigated the regulation of the nuclear proto-oncogene, c-fos by estrogen in vivo. In the uterus, estrogen causes a rapid, dramatic and transient induction of c-fos mRNA and this occurs by transcriptional activation. We have discovered a previously unrecognized regulatory mechanism by which fos becomes desensitized to estrogen following the transient induction. We investigated three aspects of this desensitization: (1) the kinetics and general characteristics of the phenomenon; (2) the molecular mechanism of the desensitization; and (3) the relationship of desensitization to estrogen stimulated DNA synthesis. The desensitization occurs between 3-24 hours after initial hormonal stimulation and is reversible within 72 hours. The desensitization is not species specific, in that it occurs in both the rat and mouse. The desensitization also occurs in at least two estrogen responsive tissues, the uterus and vagina. The desensitization is not unique to c-fos, since both c-myc and c-jun show similar patterns of desensitization. However, the desensitization is not observed with creatine kinase B (CKB), indicating that not all estrogen inducible genes become desensitized. In the second general area, we determined the desensitization is at the transcriptional level. The desensitization is homologous, but not heterologous, since estrogen induction does not desensitize c-fos to other agents. Other studies show that the desensitization is not due to the lack of functional estrogen receptors. Taken together, these findings suggest that the desensitization occurs at the level of the estrogen responsive element. In the third major area, we demonstrated that the desensitization appears to be related to estrogen induced DNA synthesis. Support for this suggestion comes from the observation that short acting estrogens which induce fos, but not DNA synthesis, do not produce desensitization. ^
Resumo:
A rapid increase of the ultraviolet radiation (UVR)-related skin cancer incidence has attracted more and more public attention during the last few decades. Prevention and treatment of UVR-related skin cancer has become an important public health issue in the United States. Recent studies indicate that mutations in ras and/or p53 genes may be involved in UVR-induced skin tumor development but the precise molecular mechanism remains unclear. In this study, alterations of H-ras and p53 genes were investigated in different stages of carcinogenesis in a chronic UVR (solar simulator) exposure-induced Sencar mouse skin carcinogenesis model in order to clarify the role of the alterations of these genes during the skin carcinogenesis process and to further understand the mechanisms by which UVR causes skin cancer.^ Positive ras-p21 staining in cell membranes and cytosol were detected in 18/33 (55%) of squamous cell carcinomas (SCCs), but were not detected in UV-exposed skin, papillomas, or spindle cell tumors (SCTs). Positive staining of the malignant progression marker K13 was found in 17/33 (52%) of SCCs only. A significant positive correlation was observed between the K13 and the ras-p21 expression. Polymerase chain reaction (PCR)-based single strand conformation polymorphism (SSCP) analysis and gene sequencing analysis revealed three point mutations, one (codon 56) in UV-exposed non-tumor bearing skin and the other two (codons 21 and 13) in SCCs. No UV-specific mutation patterns were found.^ Positive p53 nuclear staining was found in 10/37 (27%) of SCCs and 12/24 (50%) of SCTs, but was not detected in normal skin or papillomas. PCR-based SSCP and sequencing analysis revealed eight point mutations in exons 5 and 6 (four in SCTs, two in SCCs, and two in UV-exposed skin) including six C-T or C-A transitions. Four of the mutations occurred at a dipyrimidine (CC) sequence. The pattern of the mutations indicated that the mutagenic lesions were induced by UVR.^ These results indicate that overexpression of ras-p21 in conjunction with aberrant expression of K13 occurred frequently in UVR-induced SCCs in Sencar mouse skin. The point mutation in the H-ras gene appeared to be a rare event in UVR skin carcinogenesis and may not be responsible for overexpression of ras-p21. UVR-induced P53 gene alteration is a frequent event in UVR-induced SCCs and later stage SCT tumors in Sencar mice skin, suggesting the p53 gene mutation plays an important role in skin tumor malignant progression. ^
Resumo:
Transcription factors often determine cell fate and tissue development. Chondrogenesis is the developmental process by which cartilages form. Recently, gene targeting studies have shown that two transcription factors, L-Sox5 and Sox6, play essential and redundant roles in chondrogenesis in vivo by converting precartilaginous cell condensations into cartilages. Both are highly similar High-Mobility-Group (HMG)-domain proteins that bind and subsequently bend DNA containing the 7bp HMG site (A/T)(A/T)CAA(A/T)G. They have no transactivation domain, but homo- and hetero-dimerize and preferentially bind DNA containing two HMG sites. They are thought to play an architectural role in transactivation by facilitating long-range DNA and protein interactions. To understand their molecular mechanism of action, we investigated how phasing, orientation, and spacing between HMG sites affect L-Sox5 and Sox6 DNA-binding. We determined that L-Sox5 and Sox6 dimers bind with high affinity to paired HMG sites in DNA rather than a single HMG site. Binding of paired sites is independent of DNA helical phasing, orientation of paired HMG sites and independent of distance up to 255 base pairs between sites. Mutational analysis demonstrated that binding of L-Sox5 and Sox6, independent of orientation of the sites, is critically dependent on the presence of paired HMG sites rather than one HMG site alone. Our data support a unique and novel model whereby L-Sox5 and Sox6 dimerize and bind DNA with pronounced spatial flexibility, possibly by a flexible hinge, and act as architectural transcription factors that bring distant DNA sites and proteins together to form higher order transcriptional complexes that are essential for the activation of their target genes in chondrogenesis. ^
Resumo:
DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^
Resumo:
To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p<0.05) in the CO2 acidified seawater during the 30 days experiment and the health risk of Cd (based on the estimated target hazard quotients, THQ) via consumption of M. meretrix at pH 7.8 and 7.4 significantly increased 1.21 and 1.32 times respectively, suggesting a potential threat to seafood safety. The ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd2+/Ca2+ in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion.
Resumo:
The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa beta signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa beta signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria.
Resumo:
Phytohormones regulate a wide array of developmental processes throughout the life cycle of plants. Over recent years, mounting evidence led to the widely accepted concept that plant hormone action is not the read-out of linear pathways, but determined by the extensive combinatorial activity of the signaling molecules and the integration of their signaling pathways, both in terms of regulating growth and development and in adapting to external stimuli. Recent work is beginning to shed light on the crosstalk of both nominally synergistically and antagonistically acting plant hormones such as, for example, auxins with oxylipins. Here, we report that oxylipins directly contribute to the regulation of the expression of two Arabidopsis YUCCA (YUC) genes, YUC8 and YUC9. Similar to previously characterized YUC family members, we identify both YUC8 and YUC9 as involved in local auxin biosynthesis, as demonstrated by the altered auxin contents and auxin-dependent phenotypes displayed by loss-of function mutants and transgenic overexpressing lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. The microscopic data indicate a functional overlap of the two analyzed auxin biosynthesis genes, but also point out specific functions for YUC8 and YUC9, which are in part related to different spatio-temporal expression pattern. In support of these findings, the analyzed yuc knockout mutants had lower free auxin contents and displayed a reduced response to oxylipins. This work provides evidence of a molecular mechanism that links oxylipin signaling with auxin homeostasis.
Resumo:
A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein α subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) α subunit C-terminal undecapeptide Gtα(340–350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtα(340–350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an αL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325–346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor–G protein interface is demonstrated.
Resumo:
Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-Å resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Ω loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates.
Resumo:
Although hormone therapy with antiandrogens has been widely used for the treatment of prostate cancer, some antiandrogens may act as androgen receptor (AR) agonists that may result in antiandrogen withdrawal syndrome. The molecular mechanism of this agonist response, however, remains unclear. Using mammalian two-hybrid assay, we report that antiandrogens, hydroxyflutamide, bicalutamide (casodex), cyproterone acetate, and RU58841, and other compounds such as genistein and RU486, can promote the interaction between AR and its coactivator, ARA70, in a dose-dependent manner. The chloramphenicol acetyltransferase assay further demonstrates that these antiandrogens and related compounds significantly enhance the AR transcriptional activity by cotransfection of AR and ARA70 in a 1:3 ratio into human prostate cancer DU145 cells. Our results suggest that the agonist activity of antiandrogens might occur with the proper interaction of AR and ARA70 in DU145 cells. These findings may provide a good model to develop better antiandrogens without agonist activity.
Resumo:
A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.
Resumo:
A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (“endoreplication”) or initiation of mitosis before DNA is fully replicated (“mitotic catastrophe”). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of “Start” control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1− (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1− rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.
Resumo:
The inv(16) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). The inv(16) fusion protein acts by dominantly interfering with AML-1/core binding factor β-dependent transcriptional regulation. Here we demonstrate that the inv(16) fusion protein cooperates with AML-1B to repress transcription. This cooperativity requires the ability of the translocation fusion protein to bind to AML-1B. Mutational analysis and cell fractionation experiments indicated that the inv(16) fusion protein acts in the nucleus and that repression occurs when the complex is bound to DNA. We also found that the inv(16) fusion protein binds to AML-1B when it is associated with the mSin3A corepressor. An AML-1B mutant that fails to bind mSin3A was impaired in cooperative repression, suggesting that the inv(16) fusion protein acts through mSin3 and possibly other corepressors. Finally, we demonstrate that the C-terminal portion of the inv(16) fusion protein contains a repression domain, suggesting a molecular mechanism for AML-1-mediated repression.
Resumo:
Several classes of voltage-gated Ca2+ channels (VGCCs) are inhibited by G proteins activated by receptors for neurotransmitters and neuromodulatory peptides. Evidence has accumulated to indicate that for non-L-type Ca2+ channels the executing arm of the activated G protein is its βγ dimer (Gβγ). We report below the existence of two Gβγ-binding sites on the A-, B-, and E-type α1 subunits that form non-L-type Ca2+ channels. One, reported previously, is in loop 1 connecting transmembrane domains I and II. The second is located approximately in the middle of the ca. 600-aa-long C-terminal tails. Both Gβγ-binding regions also bind the Ca2+ channel β subunit (CCβ), which, when overexpressed, interferes with inhibition by activated G proteins. Replacement in α1E of loop 1 with that of the G protein-insensitive and Gβγ-binding-negative loop 1 of α1C did not abolish inhibition by G proteins, but the exchange of the α1E C terminus with that of α1C did. This and properties of α1E C-terminal truncations indicated that the Gβγ-binding site mediating the inhibition of Ca2+ channel activity is the one in the C terminus. Binding of Gβγ to this site was inhibited by an α1-binding domain of CCβ, thus providing an explanation for the functional antagonism existing between CCβ and G protein inhibition. The data do not support proposals that Gβγ inhibits α1 function by interacting with the site located in the loop I–II linker. These results define the molecular mechanism by which presynaptic G protein-coupled receptors inhibit neurotransmission.