923 resultados para Mixed integer programming model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The transmission expansion planning problem in modern power systems is a large-scale, mixed-integer, nonlinear and non-convex problem. this paper presents a new mathematical model and a constructive heuristic algorithm (CHA) for solving transmission expansion planning problem under new environment of electricity restructuring. CHA finds an acceptable solution in an iterative process, where in each step a circuit is chosen using a sensitivity index and added to the system. The proposed model consider multiple generation scenarios therefore the methodology finds high quality solution in which it allows the power system operate adequacy in an environment with multiple generators scenarios. Case studies and simulation results using test systems show possibility of using Constructive heuristic algorithm in an open access system.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.
Resumo:
In this paper, we consider the problem of topology design for optical networks. We investigate the problem of selecting switching sites to minimize total cost of the optical network. The cost of an optical network can be expressed as a sum of three main factors: the site cost, the link cost, and the switch cost. To the best of our knowledge, this problem has not been studied in its general form as investigated in this paper. We present a mixed integer quadratic programming (MIQP) formulation of the problem to find the optimal value of the total network cost. We also present an efficient heuristic to approximate the solution in polynomial time. The experimental results show good performance of the heuristic. The value of the total network cost computed by the heuristic varies within 2% to 21% of its optimal value in the experiments with 10 nodes. The total network cost computed by the heuristic for 51% of the experiments with 10 node network topologies varies within 8% of its optimal value. We also discuss the insight gained from our experiments.
Resumo:
In this paper, we propose three novel mathematical models for the two-stage lot-sizing and scheduling problems present in many process industries. The problem shares a continuous or quasi-continuous production feature upstream and a discrete manufacturing feature downstream, which must be synchronized. Different time-based scale representations are discussed. The first formulation encompasses a discrete-time representation. The second one is a hybrid continuous-discrete model. The last formulation is based on a continuous-time model representation. Computational tests with state-of-the-art MIP solver show that the discrete-time representation provides better feasible solutions in short running time. On the other hand, the hybrid model achieves better solutions for longer computational times and was able to prove optimality more often. The continuous-type model is the most flexible of the three for incorporating additional operational requirements, at a cost of having the worst computational performance. Journal of the Operational Research Society (2012) 63, 1613-1630. doi:10.1057/jors.2011.159 published online 7 March 2012
Resumo:
Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.
Resumo:
In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.
Resumo:
The execution of a project requires resources that are generally scarce. Classical approaches to resource allocation assume that the usage of these resources by an individual project activity is constant during the execution of that activity; in practice, however, the project manager may vary resource usage over time within prescribed bounds. This variation gives rise to the project scheduling problem which consists in allocating the scarce resources to the project activities over time such that the project duration is minimized, the total number of resource units allocated equals the prescribed work content of each activity, and various work-content-related constraints are met. We formulate this problem for the first time as a mixed-integer linear program. Our computational results for a standard test set from the literature indicate that this model outperforms the state-of-the-art solution methods for this problem.
Resumo:
A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^
Resumo:
SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.
Resumo:
Five frequently-used models were chosen and evaluated to calculate the viscosity of the mixed oil. Totally twenty mixed oil samples were prepared with different ratios of light to crude oil from different oil wells but the same oil field. The viscosities of the mixtures under the same shear rates of 10 s**-1 were measured using a rotation viscometer at the temperatures ranging from 30°C to 120°C. After comparing all of the experimental data with the corresponding model values, the best one of the five models for this oil field was determined. Using the experimental data, one model with a better accuracy than the existing models was developed to calculate the viscosity of mixed oils. Another model was derived to predict the viscosity of mixed oils at different temperatures and different values of mixing ratio of light to heavy oil.