972 resultados para Marine fishes
Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma)
Resumo:
The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.
Resumo:
Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia. The capacity for aerobic activity (aerobic scope) declined at temperatures above the summer average (29°C) and in CO2-acidified water (pH 7.8 and ~1000 ppm CO2) compared to control water (pH 8.15). Aerobic scope declined by 36 and 32% for O. doederleini and O. cyanosoma at temperatures between 29 to 32°C, whereas it declined by 33 and 47% for O. doederleini and O. cyanosoma in acidified water compared to control water. Thus, the declines in aerobic scope in acidified water were similar to those caused by a 3°C increase in water temperature. Minimum aerobic scope values of ~200 mg O2 kg-1 h-1 were attained for both species in acidified water at 32°C, compared with over 600 mg O2 kg-1 h-1 in control water at 29°C. Mortality rate increased sharply at 33°C, indicating that this temperature is close to the lethal thermal limit for both species. Acidification further increased the mortality rate of O. doederleini, but not of O. cyanosoma. These results show that coral reef fishes are sensitive to both higher temperatures and increased levels of dissolved CO2, and that the aerobic performance of some reef fishes could be significantly reduced if climate change continues unabated.
Resumo:
Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-reef fishes. Juvenile damselfish exhibited variation in their response to elevated (700 µatm) CO2 when tested in the laboratory and this influenced their behaviour and risk of mortality in the wild. Individuals that were sensitive to elevated CO2 were more active and move further from shelter in natural coral reef habitat and, as a result, mortality from predation was significantly higher compared with individuals from the same treatment that were tolerant of elevated CO2. If individual variation in CO2 tolerance is heritable, this selection of phenotypes tolerant to elevated CO2 could potentially help mitigate the effects of ocean acidification.
Resumo:
1. With the global increase in CO2 emissions, there is a pressing need for studies aimed at understanding the effects of ocean acidification on marine ecosystems. Several studies have reported that exposure to CO2 impairs chemosensory responses of juvenile coral reef fishes to predators. Moreover, one recent study pointed to impaired responses of reef fish to auditory cues that indicate risky locations. These studies suggest that altered behaviour following exposure to elevated CO2 is caused by a systemic effect at the neural level. 2. The goal of our experiment was to test whether juvenile damselfish Pomacentrus amboinensis exposed to different levels of CO2 would respond differently to a potential threat, the sight of a large novel coral reef fish, a spiny chromis, Acanthochromis polyancanthus, placed in a watertight bag. 3. Juvenile damselfish exposed to 440 (current day control), 550 or 700 µatm CO2 did not differ in their response to the chromis. However, fish exposed to 850 µatm showed reduced antipredator responses; they failed to show the same reduction in foraging, activity and area use in response to the chromis. Moreover, they moved closer to the chromis and lacked any bobbing behaviour typically displayed by juvenile damselfishes in threatening situations. 4. Our results are the first to suggest that response to visual cues of risk may be impaired by CO2 and provide strong evidence that the multi-sensory effects of CO2 may stem from systematic effects at the neural level.
Resumo:
Differences in the sensitivity of marine species to ocean acidification will influence the structure of marine communities in the future. Reproduction is critical for individual and population success, yet is energetically expensive and could be adversely affected by rising CO2 levels in the ocean. We investigated the effects of projected future CO2 levels on reproductive output of two species of coral reef damselfish, Amphiprion percula and Acanthochromis polyacanthus. Adult breeding pairs were maintained at current-day control (446 µatm), moderate (652 µatm) or high CO2 (912 µatm) for a 9-month period that included the summer breeding season. The elevated CO2 treatments were consistent with CO2 levels projected by 2100 under moderate (RCP6) and high (RCP8) emission scenarios. Reproductive output increased in A. percula, with 45-75 % more egg clutches produced and a 47-56 % increase in the number of eggs per clutch in the two elevated CO2 treatments. In contrast, reproductive output decreased at high CO2 in Ac. polyacanthus, with approximately one-third as many clutches produced compared with controls. Egg survival was not affected by CO2 for A. percula, but was greater in elevated CO2 for Ac. polyacanthus. Hatching success was also greater for Ac. polyacanthus at elevated CO2, but there was no effect of CO2 treatments on offspring size. Despite the variation in reproductive output, body condition of adults did not differ between control and CO2 treatments in either species. Our results demonstrate different effects of high CO2 on fish reproduction, even among species within the same family. A greater understanding of the variation in effects of ocean acidification on reproductive performance is required to predict the consequences for future populations of marine organisms.
Resumo:
Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO2 (current day levels) or 850 µatm CO2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the cognitive ability of juvenile fish and render learning ineffective.
Resumo:
v.22 (1896) text
Resumo:
v.22 (1896) atlas
Resumo:
Jellyfishes have functionally replaced several overexploited commercial stocks of planktivorous fishes. This is paradoxical, because they use a primitive prey capture mechanism requiring direct contact with the prey, whereas fishes use more efficient visual detection. We have compiled published data to show that, in spite of their primitive life-style, jellyfishes exhibit similar instantaneous prey clearance and respiration rates as their fish competitors and similar potential for growth and reproduction. To achieve this production, they have evolved large, water-laden bodies that increase prey contact rates. Although larger bodies are less efficient for swimming, optimization analysis reveals that large collectors are advantageous if they move through the water sufficiently slowly.
Resumo:
Includes bibliographical references (page 3).