938 resultados para Malignant Progression
Resumo:
Abstract Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation. A benign noninvasive rat mammary cell line, Rama 37, was used as a model system. Cell signaling and malignant cell behavior were compared between parental Rama 37 cells, which express few or no endogenous EpoRs, and a modified cell line stably transfected with human EpoR (Rama 37-28). The incubation of Rama 37-28 cells with pharmacologic levels of Epo led to the rapid and sustained increases in phosphorylation of signal transducers and activators of transcription 5, Akt, and extracellular signal-regulated kinase. The activation of these signaling pathways significantly increased invasion, migration, adhesion, and colony formation. The Epo-induced invasion capacity of Rama 37-28 cells was reduced by the small interfering RNA-mediated knockdown of EpoR mRNA levels and by inhibitors of the phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways with adhesion also reduced by Janus-activated kinase 2/signal transducers and activators of transcription 5 inhibition. These data show that Epo induces phenotypic changes in the behavior of breast cancer cell lines and establishes links between individual cell signaling pathways and the potential for cancer spread.
Resumo:
Osteopontin is a secreted, integrin-binding and phosphorylated acidic glycoprotein, which has an important role in tumour progression. We have shown that Wnt, Ets, AP-1, c-jun and beta-catenin/Lef-1/Tcf-1 stimulates OPN transcription in rat mammary carcinoma cells by binding to a specific promoter sequence. However, co-repressors of OPN have not been identified. In this study, we have used the bacterial two-hybrid system to isolate cDNA-encoding proteins that bind to OPN and modulate its role in malignant transformation. Using this approach we isolated interferon-induced transmembrane protein 3 gene (IFITM3) as a potential protein partner. We show that IFITM3 and OPN interact in vitro and in vivo and that IFITM3 reduces osteopontin (OPN) mRNA expression, possibly by affecting OPN mRNA stability. Stable transfection of IFITM3 inhibits OPN, which mediates anchorage-independent growth, cell adhesion and cell invasion. Northern blot analysis revealed an inverse mRNA expression pattern of IFITM3 and OPN in human mammary cell lines. Inhibition of IFITM3 by antisense RNA promoted OPN protein expression, enhanced cell invasion by parental benign non-invasive Rama 37 cells, indicating that the two proteins interact functionally as well. We also identified an IFITM3 DNA-binding domain, which interacts with OPN, deletion of which abolished its inhibitive effect on OPN. This work has shown for the first time that IFITM3 physically interacts with OPN and reduces OPN mRNA expression, which mediates cell adhesion, cell invasion, colony formation in soft agar and metastasis in a rat model system. Oncogene (2010) 29, 752-762; doi: 10.1038/onc.2009.379; published online 9 November 2009
Resumo:
Aims/hypothesis. This study was designed to determine whether inhibition of formation of AGE and advanced lipoxidation end-products (ALE) is a mechanism of action common to a diverse group of therapeutic agents that limit the progress of diabetic nephropathy. We compared the effects of the ACE inhibitor enalapril, the antioxidant vitamin E, the thiol compound lipoic acid, and the AGE/ALE inhibitor pyridoxamine on the formation of AGE/ALE and protection against nephropathy in streptozotocin diabetic rats.
Resumo:
Polyomavirus enhancer activator 3 protein (Pea3), also known as ETV4, is a member of the Ets-transcription factor family, which promotes metastatic progression in various types of solid cancer. Pea3-driven epithelial-mesenchymal transition (EMT) has been described in lung and ovarian cancers. The mechanisms of Pea3-induced EMT, however, are largely unknown. Here we show that Pea3 overexpression promotes EMT in human breast epithelial cells through transactivation of Snail (SNAI1), an activator of EMT. Pea3 binds to the human Snail promoter through the two proximal Pea3 binding sites and enhances Snail expression. In addition, knockdown of Pea3 in invasive breast cancer cells results in down-regulation of Snail, partial reversal of EMT, and reduced invasiveness in vitro. Moreover, knockdown of Snail partially rescues the phenotype induced by Pea3 overexpression, suggesting that Snail is one of the mediators bridging Pea3 and EMT, and thereby metastatic progression of the cancer cells. In four breast cancer patient cohorts whose microarray and survival data were obtained from the Gene Expression Omnibus database, Pea3 and Snail expression are significantly correlated with each other and with overall survival of breast cancer patients. We further demonstrate that nuclear localization of Pea3 is associated with Snail expression in breast cancer cell lines and is an independent predictor of overall survival in a Chinese breast cancer patient cohort. In conclusion, our results suggest that Pea3 may be an important prognostic marker and a therapeutic target for metastatic progression of human breast cancer. © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Despite familial clustering of nephropathy and retinopathy severity in type 1 diabetes, few gene variants have been consistently associated with these outcomes.
Resumo:
Background We had previously established that inactivation of RUNX3 occurs by frequent promoter hypermethylation and protein mislocalization in invasive ductal carcinomas (IDC) of breast. Here, we hypothesize that inactivation of RUNX3 occurring in ductal carcinoma in situ (DCIS) represent early event in breast carcinogenesis. Methods The study cohort of 40 patients included 17 pure DCIS cases and 23 cases of DCIS with associated IDC (DCIS-IDC). The DCIS and IDC components of mixed cases were manually microdissected to permit separate evaluation. All the 63 samples including 17 pure DCIS, 23 samples each of DCIS and IDC of DCIS-IDC cases were analyzed for RUNX3 protein expression using R3-6E9 monoclonal antibody as well as promoter methylation status by methylation specific PCR. Results Compared to matched normal breast samples (4 of 40, 10%), DCIS (35 of 40, 88%) and IDC (21 of 23, 91%) exhibited significant RUNX3 inactivation (P