856 resultados para Load Balancing in Wireless LAN
Resumo:
Many examples for emergent behaviors may be observed in self-organizing physical and biological systems which prove to be robust, stable, and adaptable. Such behaviors are often based on very simple mechanisms and rules, but artificially creating them is a challenging task which does not comply with traditional software engineering. In this article, we propose a hybrid approach by combining strategies from Genetic Programming and agent software engineering, and demonstrate that this approach effectively yields an emergent design for given problems.
Resumo:
The combined effects of shoot pruning (one or two stems) and inflorescence thinning (five or ten flowers per inflorescence) on greenhouse tomato yield and fruit quality were studied during the dry season (DS) and rainy season (RS) in Central Thailand. Poor fruit set, development of undersized (mostly parthenocarpic) fruits, as well as the physiological disorders blossom-end rot (BER) and fruit cracking (FC) turned out to be the prevailing causes deteriorating fruit yield and quality. The proportion of marketable fruits was less than 10% in the RS and around 65% in the DS. In both seasons, total yield was significantly increased when plants were cultivated with two stems, resulting in higher marketable yields only in the DS. While the fraction of undersized fruits was increased in both seasons when plants were grown with a secondary stem, the proportions of BER and FC were significantly reduced. Restricting the number of flowers per inflorescence invariably resulted in reduced total yield. However, in neither season did fruit load considerably affect quantity or proportion of the marketable yield fraction. Inflorescence thinning tended to promote BER and FC, an effect which was only significant for BER in the RS. In conclusion, for greenhouse tomato production under climate conditions as they are prevalent in Central Thailand, the cultivation with two stems appears to be highly recommendable whereas the measures to control fruit load tested in this study did not proof to be advisable.
Resumo:
We consider the often-studied problem of sorting, for a parallel computer. Given an input array distributed evenly over p processors, the task is to compute the sorted output array, also distributed over the p processors. Many existing algorithms take the approach of approximately load-balancing the output, leaving each processor with Θ(n/p) elements. However, in many cases, approximate load-balancing leads to inefficiencies in both the sorting itself and in further uses of the data after sorting. We provide a deterministic parallel sorting algorithm that uses parallel selection to produce any output distribution exactly, particularly one that is perfectly load-balanced. Furthermore, when using a comparison sort, this algorithm is 1-optimal in both computation and communication. We provide an empirical study that illustrates the efficiency of exact data splitting, and shows an improvement over two sample sort algorithms.
Resumo:
As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article reviews existing energy harvesting technology applied in WSNs, and analyzes advantages of harvesting radio frequency (RF) energy in WSNs.
Resumo:
The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1–20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.
Resumo:
Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.
Resumo:
LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a preparatory step for further object classification. In this paper, the authors present a novel unsupervised segmentation algorithm-skewness balancing to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting statistical moments. The results presented in this paper have shown its robustness and its potential for commercial applications.
Resumo:
Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.
Resumo:
The creation of OFDM based Wireless Personal Area Networks (WPANs) has allowed the development of high bit-rate wireless communication devices suitable for streaming High Definition video between consumer products, as demonstrated in Wireless-USB and Wireless-HDMI. However, these devices need high frequency clock rates, particularly for the OFDM, FFT and symbol processing sections resulting in high silicon cost and high electrical power. The high clock rates make hardware prototyping difficult and verification is therefore very important but costly. Acknowledging that electrical power in wireless consumer devices is more critical than the number of implemented logic gates, this paper presents a Double Data Rate (DDR) architecture for implementation inside a OFDM baseband codec in order to reduce the high frequency clock rates by a complete factor of 2. The presented architecture has been implemented and tested for ECMA-368 (Wireless- USB context) resulting in a maximum clock rate of 264MHz instead of the expected 528MHz clock rate existing anywhere on the baseband codec die.
Resumo:
The creation of OFDM based Wireless Personal Area Networks (WPANs) has allowed high bit-rate wireless communication devices suitable for streaming High Definition video between consumer products as demonstrated in Wireless- USB. However, these devices need high clock rates, particularly for the OFDM sections resulting in high silicon cost and high electrical power. Acknowledging that electrical power in wireless consumer devices is more critical than the number of implemented logic gates, this paper presents a Double Data Rate (DDR) architecture to reduce the OFDM input and output clock rate by a factor of 2. The architecture has been implemented and tested for Wireless-USB (ECMA-368) resulting in a maximum clock of 264MHz instead of 528MHz existing anywhere on the die.
Resumo:
A method to map all the variants of the IEEE 802.11 MAC frames into the Multiband OFDM based ECMA-368 Physical standard is proposed, without contravening the standard. The transportation of IEEE 802.11 MAC frames over ECMA-368 allows for the migration current of Wireless LAN applications towards a Wireless Personal Area Network (WPAN) solution. This system benefits the Consumer Electronics Market as the high data-rate WPAN is capable of transporting broadcast-quality video while the same system can also transport existing applications available today, maintaining existing effort, products and backward-compatibility(1).
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA., Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance or the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.