855 resultados para Lithium aluminate
Resumo:
The influence of lithium on the structural characteristics of PMN-PT ceramic was studied. The synthesis of PMN-PT powders using this precursor leads to the formation of high amount of perovskite phase. The insertion of Li(+) ions in B-site affects the microstructure because the rise in mass transport changes the mechanical characteristics of sintered ceramic. Higher values of K(m) and T(m) were gotten when lithium is inserted into perovskite phase. Secondary phase was found when lithium content increase beyond 1 mol%, besides the occurrence of transgranular fractures in sintered ceramic. Also, the additive acts increasing the relaxor behavior.
Resumo:
1. The effects of lithium (Li+) on the concentration-response curves (CRC) to norepinephrine (NE) and acetylcholine (Ach) on the bisected rat vas deferens (RVD) were investigated, as well as its action on the neuronal uptake of [H-3] NE.2. Li+ did not affect the 50% effective concentration (EC(50)) of NE and Ach in the epididymal (EP) portion of the RVD.3. Li+ caused a significant increase of the EC(50) to NE and Ach in the prostatic (PP) portion of the RVD. This shift to the right of the CRC to NE was prevented by the presence of myoinositol.4. Incubation of the PP of the RVD with Li+, increased the neuronal uptake of NE. The simultaneous incubation with myoinositol prevented this increase.5. After the pre-treatment of the rats with 6-hydroxydopamine (6-OHDA), or in the presence of cocaine, Li+ failed to desensitize the PP of the RVD to NE.6. These results suggest that the effect of Li+ on the PP of the RVD occurs mainly at the pre-synaptic level and may be related to the increase of neuronal uptake and to the interference of Li+ on phosphatidylinositol hydrolysis.
Resumo:
Gelation mechanisms of lithium-doped Siloxane-Poly(oxyethylene) (PEO) hybrids containing polymer of two different molecular weight (500 and 1900 g/mol) were investigated through the evolution of the electrical properties during the solgel transition. The results of electrical measurements, performed by in-situ complex impedance spectroscopy, were correlated with the coordination and the dynamical properties of the lithium ions during the process as shown by Li-7 NMR measurements. For both hybrids sols, a decrease of the conductivity is observed at the initial gelation stage, due to the existence of an inverted percolation process consisting of the progressive separation of solvent molecules containing conducting species in isolated islands during the solid network formation. An increase of conductivity occurs at more advanced stages of gelation and aging, attributed to the increasing connectivity between PEO chains promoted by the formation of crosslinks of siloxane particles at their extremities, favoring hopping motions of lithium ions along the chains.
Resumo:
The electrochemical quartz crystal microbalance (EQCM) technique was used to study two chemically distinct Nb2O5 electrochromic thin films (one pure and the other lithium-doped) during the lithium electroinsertion reaction. In the initial cycles, the electrode showed an irreversible mass variation greater than expected for Li+ insertion/deinsertion processes, which was attributed to the wettability effect (allied to the porous morphology) that emerged as the dominant process in apparent electrode mass changes. As the cycles progressed, the mass variation stabilized and the changes in apparent mass became reversible, showing a good correlation with the charge variations.The results generally indicated that the Li+ insertion/deinsertion process occurred more easily in the Nb2O5-doped film, which also displayed a greater capacity for Li+ insertion. However, a total mass/charge balance analysis revealed that the stoichiometry of the Li+ solid state insertion/deinsertion reaction was similar in the two electrodes under study. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Intercalation processes and corresponding diffusion paths of Li ions into spinel-type structured Li(1+x)Ti(2)O(4) (0 <= x <= 0.375) are systematically studied by means of periodic density functional theory calculations for different compositions and arrangements. An analysis of the site preference for intercalation processes is carried out, while energy barriers for the diffusion paths have been computed in detail. Our results indicate that the Li insertion is thermodynamically favorable at octahedral sites 16c in the studied composition range, and Li migration from tetrahedral sites 8a to octahedral sites 16c stabilizes the structure and becomes favorable for compositions x >= 0.25. Diffusion paths from less stable arrangements involving Li migrations between tetrahedral and octahedral sites exhibit the lowest energy barrier since the corresponding trajectories and energy profiles take place across a triangle made by three neighboring oxygen anions without structural modification. Theoretical and experimental diffusion coefficients are in reasonable agreement.
Resumo:
Synthesis and crystallographic data are reported for low and high temperature forms of LiLa(CrO4)2. The compounds are closely related to lamellar rare earth phosphates and arsenates of sodium and to RbLu(CrO4)2. Lattice parameters of the orthorhombic (low temperature) and monoclinic (high temperature) forms are given. The low temperature form is moisture sensitive and Li+ ions are easily displaced by protons. Thermal decomposition takes place at 250 °C and results in the formation of LiCrO2, LaCrO4, LaCrO3 and Cr2O3. © 1993.
Resumo:
The dispersion relations along the principal symmetry directions in BCC lithium-sodium alloys are calculated using second-order perturbation theory. The local modified Hoshino-Youngmodel potential was used for the lithium and the local Harrison model potential for sodium. The phonon density of states, the root mean square displacements and (Θ-T) curves are also calculated. In the absence of experimental data, just the theoretical predictions are presented here.
Resumo:
Lanthanum-lithium-sodium double chromates Li1-xNaxLa(CrO4)2 were prepared and analysed by means of admittance spectroscopy. Their a.c. conductivity parameters are correlated with structural details of high and low temperature forms of pure lanthanum-lithium double chromates. Lithium compounds show the lowest conductivity values and the highest activation energy for ion motion, while the sample Li0.5Na0.5La(CrO4)2 exhibits the highest conductivity 10-5 S cm-1 and the lowest activation energy 0.58 eV.
Resumo:
We investigate ortho-positronium-lithium-atom (Ps-Li) scattering using static-exchange and three-Ps-state coupled-channel calculations. The present three-PS-state scheme, while closely agreeing with the resonance and binding energies in the Ps-H system, predicts S-, P-, and D-wave resonances at 4.25 eV, 4.9 eV, and, 5.25 eV. respectively, in the electronic spin-singlet channel of Ps-Li scattering. The present calculation also yields a Ps-Li binding in this attractive singlet channel with an approximate binding energy of 0.218 eV, which is in adherence with the recent findings of a chemically stable PsLi system using stocastic variational and quantum Monte Carlo calculations. We further report elastic, Ps(2s)-, and Ps(2p)-excitation cross sections at low to medium energies (0.068-30 eV).
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.
Resumo:
Illumination of photorefractive, iron-doped lithium niobate crystals (LiNbO 3:Fe) with x-rays generates a conductivity that we determine from the speed of hologram erasure. The doping levels of the crystals and the acceleration voltage of our x-ray tube are varied. A theoretical model is presented, which describes the obtained results. A decrease of the conductivity with increasing Fe 2+ concentration can be explained by assuming that holes are the dominant charge carriers for this short-wavelength illumination.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A microcontrolled instrument for measuring the energy fluence rate (or intensity) of X-ray pulses in the orthovoltage range of 120 to 300 kV is described. The prototype instrument consists of a pyroelectric sensor, a low-noise highsensitivity current-to-voltage converter, a microcontroller and a digital display. The response of the instrument is nonlinear with the intensity of the radiation. The precision is better than 3%. The equipment is inexpensive, rugged, simple to construct and has good long-term stability. © 2009 Springer-Verlag.