999 resultados para Jogos de estratégia (Matemática)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Mestre em Educação Matemática na Educação Pré-Escolar e nos 1º e 2º Ciclos do Ensino Básico na especialidade de Didática da Matemática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(...) O leitor que já possua Cartão de Cidadão poderá constatar que o algarismo suplementar do BI continua a marcar presença no novo documento: surge à frente do antigo número do BI, que se passou a designar por Número de Identificação Civil (NIC), imediatamente antes de duas letras. Mas qual é o papel deste algarismo? Na verdade, o algarismo suplementar não é assim tão misterioso. É simplesmente um algarismo de controlo ou dígito de verificação (check digit), que tem como objetivo detetar erros que possam ocorrer na escrita ou leitura do número do BI. Apresente-se como exemplo o número 6235008 0, em que 0 é o algarismo suplementar. (...) Ficam assim desvendados alguns dos mistérios do Cartão de Cidadão. Mas podemos não ficar por aqui: isto porque o Número de Identificação da Segurança Social (NISS), disponível no verso do Cartão de Cidadão, também é um número de identificação com algarismo de controlo! E o curioso é que se utilizam números primos para o cálculo da soma de teste (chama-se primo a todo o número natural superior a um que tenha apenas dois divisores naturais distintos, o número um e ele próprio). Concretamente, utilizam-se os primeiros dez números primos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: A maioria das mortes em crianças é evitável. A estratégia Atenção Integrada às Doenças Prevalentes na Infância, desenvolvida pela Organização Mundial da Saúde e Fundo das Nações Unidas para a Infância, pretende reduzir a mortalidade infantil por meio de ações para melhorar o desempenho dos profissionais de saúde, a organização do sistema de saúde e as práticas da família e da comunidade. O artigo teve por objetivo descrever fatores associados à implementação dessa estratégia em três estados do Nordeste do Brasil. MÉTODOS: Estudo ecológico realizado em 443 municípios do Ceará, Paraíba e Pernambuco, em 2006. A distribuição de variáveis independentes econômicas, geográficas, ambientais, nutricionais, organização do serviço de saúde e mortalidade infantil foram comparadas entre os municípios com e sem a estratégia. Esses fatores foram avaliados por meio de modelo hierárquico utilizando regressão de Poisson para o cálculo de razões de prevalências após ajuste para fatores de confusão. RESULTADOS: Dos municípios estudados, 54% possuíam a estratégia: Ceará (65 com e 43 sem), Paraíba (27 com e 21 sem) e Pernambuco (147 com e 140 sem). Após controle para fatores de confusão, os fatores significativamente associados com a ausência da estratégia, foram: menor índice de desenvolvimento humano, menor população e maior distância da capital. CONCLUSÕES: Houve iniqüidade no desenvolvimento da estratégia, pois municípios de maior risco para a saúde infantil apresentaram menores taxas de aplicação de suas ações. São necessárias políticas de saúde que reforcem sua consolidação nos municípios de maior risco de mortalidade infantil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(...) Existem diferentes tipos de sistemas de identificação com check digit. A escolha do algoritmo a implementar deve satisfazer dois princípios: por um lado, é importante escolher um sistema eficaz que detete o maior número possível de erros; por outro lado, a sua utilização no terreno deve ser de alguma forma acessível, particularmente para quem tem de lidar diariamente com os números produzidos por esse algoritmo. Hoje em dia a utilização de meios eletrónicos revela-se muito eficaz, quer para gerar o algarismo de controlo de novos números, como para validar números que já se encontrem em circulação. Mesmo assim, há uma série de requisitos importantes a ter em conta quando se pretende implementar um novo sistema de identificação. Desde logo, a escolha do alfabeto, ou seja, dos símbolos a utilizar. Normalmente, opta-se por recorrer apenas aos dez algarismos vulgarmente utilizados, do 0 ao 9. É o caso do exemplo que se segue. O método desenvolvido pela IBM, também conhecido por algoritmo de Luhn, aplica-se à generalidade dos cartões de crédito: VISA e VISA Electron (em que o primeiro algarismo da esquerda é um 4), MarterCard (5), American Express (3) e Discover (6), entre outros. Considere-se o número de um cartão VISA: 4188 3600 4538 6426. Como é habitual, o algarismo de controlo é o primeiro algarismo da direita, ou seja, o algarismo das unidades (6). Para verificar se este número é válido, procede-se da seguinte forma (...). Há um algoritmo mais eficaz, desenvolvido por Verhoeff em 1969, que utiliza os mesmos símbolos (os algarismos do 0 a 9). Este sistema deteta 100% dos erros singulares, 100% das transposições de algarismos adjacentes e algumas das transposições intercaladas. Paradoxalmente, é um método pouco utilizado, talvez por necessitar de uma maior bagagem matemática.(...) Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201034571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...) Se nos predispusermos a alargar o alfabeto de símbolos ou a considerar mais de um algarismo de controlo, podemos obter algoritmos ainda mais eficazes na deteção de erros. É o caso dos algoritmos estabelecidos pela norma ISO/IEC 7064. Por exemplo, o algoritmo MOD 11-2 é utilizado para identificar as receitas médicas em Portugal e utiliza um símbolo adicional (o X, que representa o número 10). Já o algoritmo MOD 97-10 requer a utilização de dois algarismos de controlo e é empregue na emissão do Número de Identificação Bancária (NIB). (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Martin Gardner (1914-2010) foi um excelente divulgador de Matemática Recreativa. Durante mais de 25 anos escreveu uma coluna intitulada "Jogos Matemáticos" para a Scientific American, revista americana de divulgação científica. Escreveu também com regularidade para a revista Skeptical Inquirer e foi autor de mais de 70 obras. O seu trabalho inspirou centenas de leitores a apreciar e a querer saber mais sobre o vasto mundo da Matemática. Gardner é conhecido por apresentar interessantes enigmas e desafios matemáticos. Neste texto, analisamos três problemas da sua autoria. (...) O segredo para uma rápida resposta a estes problemas reside no conhecimento dos critérios de divisibilidade do 3 e do 9. Aproveitamos, por isso, a oportunidade para rever alguns dos principais critérios de divisibilidade. Como forma de testar a informação que apresentaremos de seguida, o leitor pode socorrer-se de um número com vários algarismos que tenha à mão. Nos exemplos abaixo, utilizaremos o ISBN-13 do livro Grupos de Simetria: Identificação de Padrões no Património Cultural dos Açores, publicado recentemente pela Associação Ludus e pela Apenas Livros, da autoria conjunta de Ricardo Teixeira, Susana Costa e Vera Moniz. O número é o seguinte: 9 789 896 185 039. (...) O leitor pode mesmo aproveitar para aplicar estes critérios de divisibilidade e fazer um brilharete junto de familiares e amigos. Por exemplo, pode virar-se de costas e pedir a um amigo que construa uma sequência de 5 cartas, utilizando cartas numeradas do Ás ao 5, pela ordem que bem entender; sem ver a sequência formada, a sua "intuição de mágico" dar-lhe-à a certeza de que o número é divisível por 3!

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Singapore Math, método utilizado para o ensino da Matemática em Singapura é, segundo as mais prestigiadas avaliações internacionais, um exemplo bem-sucedido da abordagem «concreto-pictórico-abstrato». Um dos inúmeros procedimentos didáticos são os number bonds (esquemas todo-partes), utilizados no ensino de factos fundamentais relativos à primeira dezena: decomposições, adições e subtrações. Neste artigo, analisaremos o que são, quais as vantagens e a forma de utilização destes esquemas desde a educação pré-escolar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 17 de Junho de 2015, Universidade dos Açores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Escola Superior de Educação de Lisboa (ESELx) tem um largo historial ao serviço da formação contínua de professores. Neste artigo, pretende-se dar conta do trabalho desenvolvido e a desenvolver nesse âmbito. Apresentase, primeiro, o percurso seguido, equacionando os momentos mais significativos e que se constituíram como pontos de viragem ao longo do tempo, nomeadamente, a adesão ao Programa Foco, a constituição da ESELx como Centro de Formação e a colaboração da ESELx na implementação dos Programas Nacionais de Formação Contínua nas áreas da Matemática, Português e Ensino Experimental das Ciências. Seguidamente, analisam-se as implicações que a formação contínua tem tido na vida da instituição e perspetiva-se a estratégia a seguir no futuro, entendendo a formação contínua como um fator de desenvolvimento institucional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-escolar e Ensino do 1.º Ciclo do Ensino Básico, 20 de Maio de 2015, Universidade dos Açores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um dos aspetos mais apelativos da Matemática reside nas múltiplas formas que temos de apreciar esta ciência. A procura incessante por padrões, sejam eles numéricos, geométricos ou de outra natureza qualquer, pode constituir uma atividade altamente motivadora. Nas últimas décadas, a Matemática Recreativa tem vindo a assumir um papel de maior destaque na sensibilização da opinião pública para a importância da Matemática através da exploração da sua vertente prática por intermédio, por exemplo, de quebra-cabeças e de jogos matemáticos. (...) Neste texto, apresentamos um intrigante puzzle geométrico. Chama-se Missing Square e foi desenvolvido em 1953 pelo mágico nova-iorquino Paul Curry. (...) Recentemente, tem circulado na Web um truque com uma tablete de chocolate, que se baseia no mesmo tipo de ilusão de ótica do Missing Square. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A investigação em Neurociências Cognitivas tem sofrido um grande desenvolvimento nas últimas décadas, o que impulsionou algumas descobertas sobre a forma como funciona o nosso cérebro e como se desencadeia o processo de aprendizagem. Estas descobertas oferecem aos educadores, professores e encarregados de educação uma visão aprofundada sobre as experiências de aprendizagem que podem potenciar o desenvolvimento intelectual das crianças e adolescentes. Para além de abrir caminho a algumas ideias inovadoras, a investigação proveniente das Neurociências Cognitivas tem validado várias práticas do passado e questionado outras. Neste artigo, apresentamos alguns resultados dessa investigação sobre a forma como o nosso cérebro aprende Matemática. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A resolução de problemas é um processo fundamental na aprendizagem da matemática. Neste artigo, apresenta-se uma reflexão sobre a importância deste processo matemático e de como ele pode ser conduzido de forma a estimular o raciocínio matemático através da promoção da comunicação, em contexto de sala de aula. O trabalho foi realizado na etapa final de formação de educadores e professores no contexto do pré-escolar e do primeiro ciclo do ensino básico. Em resultado das atividades realizadas, discute-se o papel da utilização de uma heurística ao longo da resolução de problemas, a importância na escolha de estratégia para a interação com os alunos, bem como o desenho intencional de materiais didáticos. A experiência enquadra-se numa abordagem qualitativa de design de experiência de ensino.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(...) Se analisarmos os principais estudos internacionais que avaliam o desempenho dos alunos a Matemática, Singapura é claramente um caso de sucesso. (...) Em Singapura, há um investimento claro na formação inicial e contínua dos professores, na disponibilização de bons materiais didáticos e nas medidas de acompanhamento individualizado dos alunos durante o ensino obrigatório. (...) Destacam-se três teorias edificadoras do currículo de Singapura: 1) A abordagem Concreto>Pictórico>Abstrato (CPA), que remonta aos trabalhos do psicólogo americano Jerome Bruner (Bruner fez 100 anos no passado dia 1 de outubro); 2) Os princípios de variabilidade matemática e percetiva, do educador matemático húngaro Zoltán Dienes (o criador dos blocos lógicos), que apontam para a necessidade de se usar diversos exemplos e contextos na aprendizagem de um conceito, assim como múltiplas representações; 3) O trabalho do psicólogo inglês Richard Skemp sobre a importância de se estabelecer conexões e de se compreender as relações matemáticas e a sua estrutura, de forma a alcançar um conhecimento profundo e duradouro das matérias (tudo deve estar relacionado). (...) Terminamos com mais alguns aspetos relevantes. Singapura adota uma abordagem em espiral de conceitos, competências e processos. Ao longo do seu percurso escolar, o aluno tem a oportunidade de trabalhar um mesmo tema mais do que uma vez, explorando múltiplas representações com diferentes níveis de profundidade. O Método de Singapura apresenta também uma forte componente visual. Um exemplo paradigmático é o modelo das barras, amplamente usado pelos alunos do Ensino Primário de Singapura (1.º e 2.º Ciclos em Portugal). (...)