986 resultados para Intense laser fields
Resumo:
The primary and secondary threshold intensities of ultraviolet-laser-induced preferential domain nucleation in nearly stoichiometric LiTaO3 is observed. The primary threshold is the minimum intensity to achieve the instantaneous preferential domain nucleation within the focus by the combined action of irradiation and electric fields. The secondary threshold is the minimum intensity to achieve the memory effect without any irradiation within the original focus. The space charge field created by the photoionization carriers is thought to be responsible for the instantaneous effect. The explanation based on the formation and transformation of extrinsic defect is presented for the memory effect. (c) 2008 American Institute of Physics.
Resumo:
Based on the Huygens-Fresnel diffraction integral and Fourier transform, propagation expression of a chirped Gaussian pulse passing through a hard-edged aperture is derived. Intensity distributions of the pulse with different frequency chirp in the near-field and far-field are analyzed in detail by numerical calculations. In the near-field, amplitudes of the intensity peaks generated by the modulation of the hard-edged aperture decrease with increasing the frequency chirp, which results in the improving of the beam uniformity. A physical explanation for the smoothing effect brought by increasing the frequency chirp is given. The smoothing effect is achieved not only in the pulse with Gaussian transverse profile but also in the pulse with Hermite-Gaussian transverse profile when the frequency chirp increases. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Theoretical method to analyze three-layer large flattened mode (LFM) fibers is presented. The modal fields, including the fundamental and higher order modes, and bending loss of the fiber are analyzed. The reason forming the different modal fields is explained and the feasibility to filter out the higher order modes via bending to realize high power, high beam quality fiber laser is given. Comparisons are made with the standard step-index fiber. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Transparent glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals were synthesized and characterized by X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. Intense broad-band luminescence centering at 1200 nm was observed when the sample was excited by a diode laser at 980 nm. The room-temperature fluorescent lifetime was 665 mu s, which is longer than the Ni2+-doped ZnAl2O4 and LiGa5O8 glass-ceramics and is also comparable to the Ni2+-doped LiGa5O8 single crystal. The intense infrared luminescence with long fluorescent lifetime may be ascribed to the high crystal field hold by Ni2+ and the moderate lattice phonon energy of beta-Ga2O3. The excellent optical properties of this novel material indicate that it might be a promising candidate for broad-band amplifiers and room-temperature tunable lasers.
Resumo:
Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers. C (c) 2005 Springer Science + Business Media, Inc.
Resumo:
Structural and frequency upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride germanate glasses have been investigated. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network and has an important influence on the upconversion luminescence. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible upconversion mechanism was also estimated and evaluated. Intense upconversion luminescence indicates that Er3+/Yb3+-codoped oxychloride germanate glass is a promising laser material. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 degrees C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet-blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O-2-to Nb5+ can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix. (C) 2008 Optical Society of America.
Resumo:
Eu2+-doped high silica glass (HSG) is fabricated by sintering porous glass which is impregnated with europium ions. Eu2+-doped HSG is revealed to yield intense blue emission excited by ultraviolet (UV) light and near-infrared femtosecond laser. The emission profile obtained by UV excitation can be well traced by near-infrared femtosecond laser. The upconversion emission excited by 800 nm femtosecond laser is considered to be related to a two-photon absorption process from the relationship between the integrated intensity and the pump power. A tentative scheme of upconverted blue emission from Eu2+-doped HSG was also proposed. The HSG materials presented herein are expected to find applications in high density optical storage and three-dimensional color displays. (c) 2008 American Institute of Physics.
Resumo:
High optical quality Lu2SiO5 (LSO) and (Lu0.5Gd0.5)(2)SiO5 (LGSO) laser crystals codoped with Er3+ and Yb3+ have been fabricated by the Czochralski method. Intense upconversion (UC) and infrared emission (1543 nm) are observed under excitation of 975 nm. The luminescence processes are explained and the emission efficiencies are quantitatively obtained by measuring the UC efficiency and calculating the emission cross section. The temperature-dependent optical properties of the crystals are also investigated. Our study indicates that Er3+-Yb3+ : LSO and Er3+-Yb3+: LGSO crystals are promising gain media for developing the solid-state 1.5 mu m optical amplifiers and tunable UC lasers. (c) 2008 American Institute of Physics.
Resumo:
Using a chiral nematic liquid crystal with a negative dielectric anisotropy, it is possible to switch between band-edge laser emission and random laser emission with an electric field. At low frequencies (1 kHz), random laser emission is observed as a result of scattering due to electro-hydrodynamic instabilities. However, band-edge laser emission is found to occur at higher frequencies (5 kHz), where the helix is stabilized due to dielectric coupling. These results demonstrate a method by which the linewidth of the laser source can be readily controlled externally (from 4 nm to 0.5 nm) using electric fields. © 2012 American Institute of Physics.
Resumo:
An electro-optically (EO) modulated oxide-confined vertical-cavity surface-emitting laser (VCSEL) containing a saturable absorber in the VCSEL cavity is studied. The device contains an EO modulator section that is resonant with the VCSEL cavity. A type-II EO superlattice medium is employed in the modulator section and shown to result in a strong negative EO effect in weak electric fields. Applying the reverse bias voltages to the EO section allows triggering of short pulses in the device. Digital data transmission (return-to-zero pseudo-random bit sequence, 27-1) at 10Gb/s at bit-error-rates well below 10-9 is demonstrated. © 2014 AIP Publishing LLC.
Resumo:
Tuneable optical sensors have been developed to sense chemical stimuli for a range of applications from bioprocess and environmental monitoring to medical diagnostics. Here, we present a porphyrin-functionalised optical sensor based on a holographic grating. The holographic sensor fulfils two key sensing functions simultaneously: it responds to external stimuli and serves as an optical transducer in the visible region of the spectrum. The sensor was fabricated via a 6 nanosecond-pulsed laser (350 mJ, λ = 532 nm) photochemical patterning process that enabled a facile fabrication. A novel porphyrin derivative was synthesised to function as the crosslinker of a polymer matrix, the light-absorbing material, the component of a diffraction grating, as well as the cation chelating agent in the sensor. The use of this multifunctional porphyrin permitted two-step fabrication of a narrow-band light diffracting photonic sensing structure. The resulting structure can be tuned finely to diffract narrow-band light based on the changes in the fringe spacing within the polymer and the system's overall index of refraction. We show the utility of the sensor by demonstrating its reversible colorimetric tuneability in response to variation in concentrations of organic solvents and metal cations (Cu 2+ and Fe2+) in the visible region of the spectrum (λmax ≈ 520-680 nm) with a response time within 50 s. Porphyrin-functionalised optical sensors offer great promise in fields varying from environmental monitoring to biochemical sensing to printable optical devices. This journal is © the Partner Organisations 2014.
Resumo:
We have fabricated surface plasmon modulated nano-aperture vertical-cavity surface-emitting lasers (VCSELs) from common 850 nm VCSELs using focus ion beam etching with Ga+ ion source. The far-field output power is about 0.3 mW at a driving current of 15 mA with a sub-wavelength aperture surrounded by concentric periodic grooves. The enhancement of transmission intensity can be explained by diffraction and enhanced fields associated with surface plasmon. This structure also exhibits beaming properties.
Resumo:
A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.