986 resultados para Insecticides - Toxicology
Resumo:
The prefrontal cortex (PFC), located in the anterior region of the frontal lobe, is considered to have several key roles in higher cognitive and executive functions. In general, the PFC can be seen as a coordinator of thought and action allowing subjects to behave in a goal-directed manner. Due to its anatomical connections with a variety of cortical and subcortical structures, several neurotransmitters, including dopamine, are involved in the regulation of PFC activity. In general, the majority of released dopamine is cleared by the dopamine transporter (DAT). In the PFC however, the number of presynaptic DAT is diminished, emphasizing the relative importance of catechol-O-methyltransferase (COMT) in dopamine metabolism. As a result, the role of COMT in the etiology of psychotic disorders is under constant debate. The present study investigated the role of COMT in prefrontal cortical dopamine metabolism by different neurochemical methods in COMT knockout (COMT-KO) mice. Pharmacological tools to inhibit other dopamine clearing mechanisms were also used for a more comprehensive and collective picture. In addition, this study investigated how a lack of the soluble (S-) COMT isoform affects the total COMT activity as well as the pharmacokinetics of orally administered L-dopa using mutant mice expressing only the membrane-bound (MB-) COMT isoform. Also the role of COMT in striatal and accumbal dopamine turnover during Δ9-tetrahydrocannabinol (THC) challenge was studied. We found markedly increased basal dopamine concentrations in the PFC, but not the striatum or nucleus accumbens (NAcc), of mice lacking COMT. Pharmacological inhibition of the noradrenaline transporter (NET) and monoamine oxidase (MAO) elevated prefrontal cortical dopamine levels several-fold, whereas inhibition of DAT did not. The lack of COMT doubled the dopamine raising effects of NET and MAO inhibition. No compensatory expression of either DAT or NET was found in the COMT-KO mice. The lack of S-COMT decreased the total COMT activity by 50-70 % and modified dopamine transmission and the pharmacokinetics of exogenous Ldopa in a sex and tissue specific manner. Finally, we found that subsequent tolcapone and THC increased dopamine levels in the NAcc, but not in the striatum. Conclusively, this study presents neurochemical evidence for the important role of COMT in the PFC and shows that COMT is responsible for about half of prefrontal cortical dopamine metabolism. This study also highlights the previously underestimated proportional role of MB-COMT and supports the clinical evidence of a gene x environment interaction between COMT and cannabis.
Resumo:
Oral administration (250 mg/kg) of menthofuran, a monoterpene furan, to rats once daily for 3 days caused hepatotoxicity as judged by a significant increase in serum glutamate pyruvate transaminase (SGPT) and decreases in glucose-6-phosphatase and aminopyrine N-demethylase activities. Administration of menthofuran also resulted in a decrease in the levels of liver microsomal cytochrome P-450, whereas cytochrome b(5) and NAD(P)H-cytochrome c reductase activities were not affected. These effects of menthofuran were both dose- and time-dependent. Pretreatment of rats with phenobarbital (PB) prior to menthofuran treatment potentiated hepatotoxicity suggesting that a PB-induced cytochrome P-450 catalyzed the formation of reactive metabolite(s) responsible for the hepatotoxicity.
Resumo:
The present study deals with the in vitro and in vivo effects of methyl isocyanate (MIC) on rat brain mitochondrial function. Addition of MIC to tightly coupled brain mitochondria in vitro resulted in a mild stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/0 ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fourfold) to the inhibitory action of MIC than succinate while cytochrome oxidase was unaffected. Administration of MIC subcutaneously at a lethal dose affected respiration only with glutamate + malate as the substrate (site I) and caused a 20% decrease in state 3 oxidation leading to a significant decrease in respiratory control index while state 4 respiration and ADP/O ratio remained unaffected. As both the malondialdehyde and iron contents of brain mitochondria were not altered, it may be inferred that the observed in vivo inhibition of state 3 oxidation is induced by MIC through systemic stagnant hypoxia leading to ischemia of brain, which further contributes to the cerebral hypoxia.
Resumo:
Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.
Resumo:
The effect of malathion on jugular plasma concentrations of follicle-stimulating hormone (FSH), estradiol (E2), progesterone (P4) and acetylcholinesterase (AchE) on conception in dairy cattle during a cloprostenol (prostaglandin F2-alpha analogue, PG)-induced estrus was studied. Malathion (1 mg/kg, intraruminally) given at the onset of estrus (48 h after PG) did not alter the plasma FSH or E2 concentrations but significantly (P < 0.05) inhibited plasma P4 concentration. The mean P4 concentration in the malathion-treated group on days 8 and 12 were 0.8 +/- 0.4 and 1.0 +/- 0.5 ng/ml, as compared to 2.6 +/- 0.0 and 2.4 +/- 0.3 ng/ml in the control group. There was a nonsignificant (P > 0.05) inhibition of plasma AchE activity in malathion-treated cattle. Conception was 16.6% in malathion-treated cows and 50% in controls. Inhibition of progesterone secretion and poor conception occurred after the single intraruminal dose of malathion at the onset of estrus.
Resumo:
Hydrogenperoxide (H2O2) is generated in mitochondria in aerobic cells as a minor product of electron transport, is inhibited selectively by phenolic acids (in animals) or salicylhydroxamate (in plants) and is regulated by hormones and environmental conditions. Failure to detect this activity is due to presence of H2O2-consuming reactions or inhibitors present in the reaction mixture. H2O2 has a role in metabolic regulation and signal transduction reactions. A number of enzymes and cellular activities are modified, mostly by oxidizing the protein-thiol groups, on adding H2O2 in mM concentrations. On complexing with vanadate, also occurring in traces, H2O2 forms diperoxovanadate (DPV), stable at physiological pH and resistant to degradation by catalase. DPV was found to substitute for H2O2 at concentrations orders of magnitude lower, and in presence of catalase, as a substrate for user reaction, horseradish peroxidase (HRP), and in inactivating glyceraldehyde-3-phosphate dehydrogenase. superoxide dismutase (SOD)-sensitive oxidation of NADH was found to operate as peroxovanadate cycle using traces of DPV and decameric vanadate (V-10) and reduces O-2 to peroxide (DPV in presence of free vanadate). This offers a model for respiratory burst. Diperoxovanadate reproduces several actions of H2O2 at low concentrations: enhances protein tyrosine phosphorylation, activates phospholipase D, produces smooth muscle contraction, and accelerates stress induced premature senescence (SIPS) and rounding in fibroblasts. Peroxovanadates can be useful tools in the studies on H2O2 in cellular activities and regulation.
Resumo:
Lipopolysaccharide (LPS) is an endotoxin, a potent stimulator of immune response and induction of LPS leads to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ARDS is a life-threatening disease worldwide with a high mortality rate. The immunological effect of LPS with spleen and thymus is well documented; however the impact on membrane phospholipid during endotoxemia has not yet been studied. Hence we aimed to investigate the influence of LPS on spleen and thymus phospholipid and fatty acid composition by 32P]orthophosphate labeling in rats. The in vitro labeling was carried out with phosphate-free medium (saline). Time course, LPS concentration-dependent, pre- and post-labeling with LPS and fatty acid analysis of phospholipid were performed. Labeling studies showed that 50 mu g LPS specifically altered the major phospholipids, phosphatidylcholine and phosphatidylglycerol in spleen and phosphatidylcholine in thymus. Fatty acid analysis showed a marked alteration of unsaturated fatty acids/saturated fatty acids in spleen and thymus leading to immune impairment via the fatty acid remodeling pathway. Our present in vitro lipid metabolic labeling study could open up new vistas for exploring LPS-induced immune impairment in spleen and thymus, as well as the underlying mechanism.
Resumo:
Introduction: Cytochromes P450 (P450) and associated monooxygenases are a family of heme proteins involved in metabolism of endogenous compounds (arachidonic acid, eicosanoids and prostaglandins) as also xenobiotics including drugs and environmental chemicals. Liver is the major organ involved in P450-mediated metabolism and hepatic enzymes have been characterized. Extrahepatic organs, such as lung, kidney and brain have the capability for biotransformation through P450 enzymes. Brain, including human brain, expresses P450 enzymes that metabolize xenobiotics and endogenous compounds. Areas covered: An overview of P450-mediated metabolism in brain is presented focusing on distinct differences seen in expression of P450 enzymes, generation of unique P450 enzymes in brain through alternate splicing and their consequences in terms of metabolism of psychoactive drugs and inflammatory prompts, such as leukotrienes, thus modulating inflammatory response. Expert opinion: The brain possesses unique P450s that metabolize drugs and endogenous compounds through pathways that are markedly different from that seen in liver indicating that extrapolation directly from liver to brain is not appropriate. It is therefore necessary to characterize the unique brain P450s and their ability to metabolize xenobiotics and endogenous compounds to better understand the functions of this important class of enzymes in brain, especially human brain.
Resumo:
The growing commercial applications had brought aluminium oxide nanoparticles under,toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6 +/- 22 nm and ANP(2), mean hydrodynamic diameter 246.9 +/- 39 nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (<= 1 mu g/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al3+ ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) 82.6 +/- 22 nm (0 h) to 246.3 +/- 59 nm (24h), to 1204 +/- 140 nm (72 h)] and ANP(2) 246.9 +/- 39 nm (Oh) to 368.28 +/- 48 nm (24 h), to 1225.96 +/- 186 nm (72 h)] signifying decreased relative abundance of submicron sized particles (<1000 nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1 mu g/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72 h, significant Al3+ ion release in the test medium 0.092 mu g/mL for ANP(1), and 0.19 mu g/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity.
Resumo:
Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Background & objectives: Pre-clinical toxicology evaluation of biotechnology products is a challenge to the toxicologist. The present investigation is an attempt to evaluate the safety profile of the first indigenously developed recombinant DNA anti-rabies vaccine DRV (100 mu g)] and combination rabies vaccine CRV (100 mu g DRV and 1.25 IU of cell culture-derived inactivated rabies virus vaccine)], which are intended for clinical use by intramuscular route in Rhesus monkeys. Methods: As per the regulatory requirements, the study was designed for acute (single dose - 14 days), sub-chronic (repeat dose - 28 days) and chronic (intended clinical dose - 120 days) toxicity tests using three dose levels, viz. therapeutic, average (2x therapeutic dose) and highest dose (10 x therapeutic dose) exposure in monkeys. The selection of the model i.e. monkey was based on affinity and rapid higher antibody response during the efficacy studies. An attempt was made to evaluate all parameters which included physical, physiological, clinical, haematological and histopathological profiles of all target organs, as well as Tiers I, II, III immunotoxicity parameters. Results: In acute toxicity there was no mortality in spite of exposing the monkeys to 10XDRV. In sub chronic and chronic toxicity studies there were no abnormalities in physical, physiological, neurological, clinical parameters, after administration of test compound in intended and 10 times of clinical dosage schedule of DRV and CRV under the experimental conditions. Clinical chemistry, haematology, organ weights and histopathology studies were essentially unremarkable except the presence of residual DNA in femtogram level at site of injection in animal which received 10X DRV in chronic toxicity study. No Observational Adverse Effects Level (NOAEL) of DRV is 1000 ug/dose (10 times of therapeutic dose) if administered on 0, 4, 7, 14, 28th day. Interpretation & conclusions: The information generated by this study not only draws attention to the need for national and international regulatory agencies in formulating guidelines for pre-clinical safety evaluation of biotech products but also facilitates the development of biopharmaceuticals as safe potential therapeutic agents.
Resumo:
Tobacco-specific nitrosamines (TSNA) have implications in the pathogenesis of various lung diseases and conditions are prevalent even in non-smokers. N-nitrosonornicotine (NNN) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are potent pulmonary carcinogens present in tobacco product and are mainly responsible for lung cancer. TSNA reacts with pulmonary surfactants, and alters the surfactant phospholipid. The present study was undertaken to investigate the in vitro exposure of rat lung tissue slices to NNK or NNN and to monitor the phospholipid alteration by P-32]orthophosphate labeling. Phospholipid content decreased significantly in the presence of either NNK or NNN with concentration and time dependent manner. Phosphatidylcholine (PC) is the main phospholipid of lung and significant reduction was observed in PC similar to 61%, followed by phosphatidylglycerol (PG) with 100 mu M of NNK, whereas NNN treated tissues showed a reduction in phosphatidylserine (PS) similar to 60% and PC at 250 mu M concentration. The phospholipase A(2) assays and expression studies reveal that both compounds enhanced phospholipid hydrolysis, thereby reducing the phospholipid content. Collectively, our data demonstrated that both NNK and NNN significantly influenced the surfactant phospholipid level by enhanced phospholipase A(2) activity. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 +/- 35.01 nm, 555.74 +/- 19.93 nm, and 1620.24 +/- 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
El zapallo Spaghetti, cultivo vigoroso de clima templado, constituye una alternativa productiva interesante y novedosa para nuestro país. El objetivo de este estudio fue evaluar el efecto del mulching y de la densidad sobre el rendimiento total, el peso medio y el calibre de los frutos. El estudio se llevó a cabo en Azul sobre un suelo Argiudol típico en camellones de 0,80 m de ancho con diferentes densidades de siembra. Se realizó una fertilización profunda en bandas de 0,80 m con fosfato diamónico, controlando las malezas en forma química, manual y mecánicamente, y las plagas haciendo aplicaciones preventivas de insecticidas y fungicidas. La siembra manual se efectuó el 2 de noviembre y los tratamientos fueron: densidades de siembra de 20, 15, 10 y 5 mil pl/ha (D1, D2, D3 y D4), con y sin mulching. Se trabajó con 32 parcelas y cada una tenía tres surcos de seis metros de longitud separados entre si por 2m. Se realizaron cuatro cosechas al llegar a la madurez completa (15/2, 29/2, 7/3 y 3/4). Los calibres evaluados fueron: (1) 2,2 kg, (2) 1,7 kg; (3) 1,3 kg y (4) 0,8 kg / fruto. Para el análisis de los datos se utilizó un modelo de bloques completamente aleatorizados con parcelas sub-divididas. En la parcela principal se evaluó el efecto del mulching, en la subparcela la densidad y la interacción de mulching por densidad, y en la subsubparcelas las diferentes cosechas. La cosecha total mostró diferencias significativas para el efecto del mulching, obteniéndose 71,90 t/ha (a) (con mulching) y 62,02 t/ha (b) (sin mulching); para cada densidad se detectaron diferencias significativas para el efecto mulching: D1: 84,45 t/ha (a), D2: 76,47 t/ha (ab); D3: 65,14 t/ha (b) y D4: 61,55 t/ha (b). Se observaron diferencias significativas en el número de frutos cosechados: con mulching (51.667 frutos/ha) y sin mulching (44.167 frutos/ha), y para las diferentes densidades: D1: 54.167 (a); D2: 50.000 (ab); D3: 47.700 (ab) y D4: 40.833 (b) t/ha. La composición de calibres de frutos cosechados fue el mismo para todos los tratamientos y cosechas.
Resumo:
Las diferencias genéticas entre individuos (polimorfismos) condicionan los efectos de un fármaco en cuanto a la toxicología (efectos adversos) y farmacoterapia. Nuevas técnicas analíticas permiten estudiar el perfil genético de los individuos. Surge así una nueva disciplina, la Farmacogenómica, que es el estudio del total de genes farmacológicamente relevantes, así como la forma en que dichos genes manifiestan sus variaciones, y de qué manera estas variaciones pueden interaccionar para configurar el fenotipo de cada individuo, en lo que afecta a su respuesta a los medicamentos. La Bioética personalista ofrece un camino de reflexión que acompaña el quehacer científico en la búsqueda de fines verdaderos. En este sentido es fundamental acercar nuevas y mejores curas, así como disminuir el dolor de enfermedades crónicas y terminales, siempre y cuando se eviten nuevas clasificaciones de seres humanos e injusticias a la hora de distribuir los recursos.