963 resultados para IMPROVES CARDIAC-FUNCTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Doxorubicin can cause cardiotoxicity. Matrix metalloproteinases (MMP) are responsible for degrading extracellular matrix components which play a role in ventricular dilation. Increased MMP activity occurs after chronic doxorubicin treatment. In this study we evaluated in vivo and in vitro cardiac function in rats with acute doxorubicin treatment, and examined myocardial MMP and inflammatory activation, and gene expression of proteins involved in myocyte calcium transients. Methods: Wistar rats were injected with doxorubicin (Doxo, 20 mg/kg) or saline (Control). Echocardiogram was performed 48 h after treatment. Myocardial function was assessed in vitro in Langendorff preparation. Results: In left ventricle, doxorubicin impaired fractional shortening (Control 0.59 +/- 0.07; Doxo 0.51 +/- 0.05; p < 0.001), and increased isovolumetric relaxation time (Control 20.3 +/- 4.3; Doxo 24.7 +/- 4.2 ms; p = 0.007) and myocardial passive stiffness. MMP-2 activity, evaluated by zymography, was increased in Doxo (Control 141338 +/- 8924; Doxo 188874 +/- 7652 arbitrary units; p < 0.001). There were no changes in TNF-alpha, INF-gamma, IL-10, and ICAM-1 myocardial levels. Expression of phospholamban, Serca-2a, and ryanodine receptor did not differ between groups. Conclusion: Acute doxorubicin administration induces in vivo left ventricular dysfunction and in vitro increased myocardial passive stiffness in rats. Cardiac dysfunction is related to myocardial MMP-2 activation. Increased inflammatory stimulation or changed expression of the proteins involved in intracellular calcium transients is not involved in acute cardiac dysfunction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Pectus excavatum is characterized by a depression of the anterior chest wall (sternum and lower costal cartilages) and is the most frequently occurring chest wall deformity. The prevalence ranges from 6.28 to 12 cases per 1000 around the world. Generally pectus excavatum is present at birth or is identified after a few weeks or months; however, sometimes it becomes evident only at puberty. The consequence of the condition on a individual's life is variable, some live a normal life and others have physical and psychological symptoms such as: precordial pain after exercises; impairments of pulmonary and cardiac function; shyness and social isolation. For many years, sub-perichondrial resection of the costal cartilages, with or without transverse cuneiform osteotomy of the sternum and placement of a substernal support, called conventional surgery, was the most accepted option for surgical repair of these patients. From 1997 a new surgical repair called, minimally invasive surgery, became available. This less invasive surgical option consists of the retrosternal placement of a curved metal bar, without resections of the costal cartilages or sternum osteotomy, and is performed by videothoracoscopy. However, many aspects that relate to the benefits and harms of both techniques have not been defined. Objectives: To evaluate the effectiveness and safety of the conventional surgery compared with minimally invasive surgery for treating people with pectus excavatum. Search methods: With the aim of increasing the sensitivity of the search strategy we used only terms related to the individual's condition (pectus excavatum); terms related to the interventions, outcomes and types of studies were not included. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, LILACS, and ICTPR. Additionally we searched yet reference lists of articles and conference proceedings. All searches were done without language restriction. Date of the most recent searches: 14 January 2014. Selection criteria: We considered randomized or quasi-randomized controlled trials that compared traditional surgery with minimally invasive surgery for treating pectus excavatum. Data collection and analysis: Two review authors independently assessed the eligibility of the trials identified and agreed trial eligibility after a consensus meeting. The authors also assessed the risk of bias of the eligible trials. Main results: Initially we located 4111 trials from the electronic searches and two further trials from other resources. All trials were added into reference management software and the duplicates were excluded, leaving 2517 studies. The titles and abstracts of these 2517 studies were independently analyzed by two authors and finally eight trials were selected for full text analysis, after which they were all excluded, as they did not fulfil the inclusion criteria. Authors' conclusions: There is no evidence from randomized controlled trials to conclude what is the best surgical option to treat people with pectus excavatum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pectus excavatum is characterized by a depression of the anterior chest wall (sternum and lower costal cartilages) and is the most frequently occurring chest wall deformity. The prevalence ranges from 6.28 to 12 cases per 1000 around the world. Generally pectus excavatum is present at birth or is identified after a few weeks or months; however, sometimes it becomes evident only at puberty. The consequence of the condition on a individual’s life is variable, some live a normal life and others have physical and psychological symptoms such as: precordial pain after exercises; impairments of pulmonary and cardiac function; shyness and social isolation. For many years, sub-perichondrial resection of the costal cartilages, with or without transverse cuneiform osteotomy of the sternum and placement of a substernal support, called conventional surgery, was the most accepted option for surgical repair of these patients. From 1997 a new surgical repair called, minimally invasive surgery, became available. This less invasive surgical option consists of the retrosternal placement of a curved metal bar, without resections of the costal cartilages or sternum osteotomy, and is performed by videothoracoscopy. However, many aspects that relate to the benefits and harms of both techniques have not been defined. Objectives To evaluate the effectiveness and safety of the conventional surgery compared with minimally invasive surgery for treating people with pectus excavatum. Search methods With the aim of increasing the sensitivity of the search strategy we used only terms related to the individual’s condition (pectus excavatum); terms related to the interventions, outcomes and types of studies were not included. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, LILACS, and ICTPR. Additionally we searched yet reference lists of articles and conference proceedings. All searches were done without language restriction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background: Several mechanisms have been proposed to contribute to cardiac dysfunction in obesity models, such as alterations in calcium (Ca2+) handling proteins and β-adrenergic receptors. Nevertheless, the role of these factors in the development of myocardial dysfunction induced by obesity is still not clear. Objective: The purpose of this study was to investigate whether obesity induced by hypercaloric diets results in cardiac dysfunction. Furthermore, it was evaluated whether this functional abnormality in obese rats is related to abnormal Ca2+ handling and the β-adrenoceptor system. Methods: Male 30-day-old Wistar rats were fed with standard food (C) and a cycle of five hypercaloric diets (Ob) for 15 weeks. Obesity was defined as increases in body fat percentage in rats. Cardiac function was evaluated by isolated analysis of the left ventricle papillary muscle under basal conditions and after inotropic and lusitropic maneuvers. Results: Compared with the control group, the obese rats had increased body fat and glucose intolerance. The muscles of obese rats developed similar baseline data, but the myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca2+ were compromised. There were no changes in cardiac function between groups after β-adrenergic stimulation. Conclusion: Obesity promotes cardiac dysfunction related to changes in intracellular Ca2+ handling. This functional damage is probably caused by reduced cardiac sarcoplasmic reticulum Ca2+ ATPase (SERCA2) activation via Ca2+ calmodulin kinase. (Arq Bras Cardiol 2011; 97(3) : 232-240).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Bases Gerais da Cirurgia - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Bases Gerais da Cirurgia - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mediastinal lymphadenomegaly secondary to hypervolemia is an underdiagnosed tomographic finding. Herein we describe, in a patient with normal cardiac function, findings of pulmonary congestion associated to lymph node enlargement. The nephrotic syndrome causing hypoalbuminemia, low plasma colloid osmotic pressure and augmented transcapillary fluid leakage was the probable cause of the radiological findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gestational hypothyroidism is a prevalent disorder in pregnant women. We aimed to investigate the impact of experimental gestational hypothyroidism (EGH) on cardiovascular and autonomic nervous systems (ANS) in the offspring of rats. EGH was induced with methimazole (MMI) 0.02% in drinking water from day 9 of gestation until birth. Sixty day old offspring from MMI-treated dams (OMTD, n = 13) or water-treated dams (OWTD, n = 13) had femoral arteries surgically assessed for the measurements of heart rate (HR), mean (MAP), systolic (SAP) and diastolic arterial pressure (DAP), and spontaneous baroreflex sensitivity (BRS). To investigate the balance of ANS, we established the high (HF) and low frequency (LF) bands of pulse interval (PI) and LF band of SAP spectrum. OMTD had increased MAP (130.2 +/- 2.0 vs 108.8 +/- 3.0 mm Hg, p<0.001), SAP (157.3 +/- 2.9 vs 135.7 +/- 4.5 mm Hg, p<0.001) and DAP (109.7 +/- 1.9 vs 88.4 +/- 2.6 mm Hg, p<0.001) when compared to OWED, and had lower HR (355.1 +/- 8.9 vs 386.8 +/- 9.2 bpm, p<0.05). After spectral analysis of PI and SAP, only LF band of SAP spectrum was higher (7.2 +/- 0.8 vs 4.0 +/- 0.6 mm Hg-2, p<0.01) in OMTD under spontaneous condition. Despite bradycardia, EGH promotes spontaneous hypertension in 60 day old offspring, probably due to increased sympathetic modulation of vessels, which is suggested by the higher LF of SAP. These findings suggest a critical role of maternal THs in the development of fetal cardiovascular and autonomic nervous systems. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulin and the inhibition of the reninangiotensin system have independent benefits for ischemiareperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemiareperfusion. Isolated hearts were perfused (Langendorff technique) with KrebsHenseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was similar to 31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (similar to 2.2 times) in all groups vs. group KH and was similar to 35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was similar to 28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the myocardial thioredoxin-1 and hydrogen peroxide concentrations and their association with some prosurvival and pro-apoptotic proteins, during the transition from myocardial infarction (MI) to heart failure in rats. Male Wistar rats were divided into the following six groups: three sham-operated groups and three MI groups, each at at 2, 7 and 28 days postsurgery. Cardiac function was analysed by echocardiography; the concentration of H2O2 and the ratio of reduced to oxidized glutathione were measured spectrophotometrically, while the myocardial immunocontent of thioredoxin-1, angiotensin II, angiotensin II type 1 and type 2 receptors, p-JNK/JNK, p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK3 beta/GSK3 beta was evaluated by Western blot. Our results show that thioredoxin-1 appears to make an important contribution to the reduced H2O2 concentration. It was associated with lower JNK expression in the early period post-MI (2 days). However, thioredoxin-1 decreased, while reninangiotensin system markers and levels of H2O2 increased, over 28 days post-MI, in parallel with some signalling proteins involved in maladaptative cardiac remodelling and ventricular dysfunction. These findings provide insight into the time course profile of endogenous antioxidant adaptation to ischaemic injury, which may be useful for the design of therapeutical strategies targeting oxidative stress post-MI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background and aims The aim of the present investigation was to examine the anti-wasting effects of theophylline (a methylxantine present in tea leaves) on a rat model of cancer cachexia. Methods The in vitro effects of the nutraceuticals on proteolysis were examined on muscle cell cultures submitted to hyperthermia. Individual muscle weights, muscle gene expression, body composition and cardiac function were measured in rats bearing the Yoshida AH-130 ascites hepatoma, following theophylline treatment. Results Theophylline treatment inhibited proteolysis in C2C12 cell line and resulted in an anti-proteolytic effect on muscle tissue (soleus and heart), which was associated with a decrease in circulating TNF-alpha levels and with a decreased proteolytic systems gene expression. Treatment with the nutraceutical also resulted in an improvement in body composition and cardiac function. Conclusion Theophylline - alone or in combination with drugs - may be a candidate molecule for the treatment of cancer cachexia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Thyroid hormone induces cardiac hypertrophy and preconditions the myocardium against Ischemia/Reperfusion (I/R) injury. Type 2 Angiotensin II receptors (AT2R) are shown to be upregulated in cardiac hypertrophy observed in hyperthyroidism and this receptor has been reported to mediate cardioprotection against ischemic injury. Methods The aim of the present study was to evaluate the role of AT2R in the recovery of myocardium after I/R in isolated hearts from T3 treated rats. MaleWistar rats were treated with triiodothyronine (T3; 7 μg/100 gBW/day, i.p.) in the presence or not of a specific AT2R blocker (PD123,319; 10 mg/Kg) for 14 days, while normal rats served as control. After treatment, isolated hearts were perfused in Langendorff mode; after 30 min of stabilization, hearts were subjected to 20 min of zero-flow global ischemia followed by 25 min, 35 min and 45 min of reperfusion. Results T3 treatment induced cardiac hypertrophy, which was not changed by PD treatment. Post-ischemic recovery of cardiac function was increased in T3-treated hearts after 35 min and 45 min of reperfusion as compared to control and the ischemic contracture was accelerated and intensified. AT2R blockade was able to return the evaluated functional parameters of cardiac performance (LVDP, +dP/dtmáx and −dP/dtmin) to the control condition. Furthermore, AT2R blockade prevented the increase in AMPK expression levels induced by T3, suggesting its possible involvement in this process. Conclusion AT2R plays a significant role in T3-induced cardioprotection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background/objectives: Therapy using bone marrow (BM) cells has been tested experimentally and clinically due to the potential ability to restore cardiac function by regenerating lost myocytes or increasing the survival of tissues at risk after myocardial infarction (MI). In this study we aimed to evaluate whether BM-derived mononuclear cell (MNC) implantation can positively influence the post-MI structural remodeling, contractility and Ca(2 +)-handling proteins of the remote non-infarcted tissue in rats. Methods and results: After 48 h of MI induction, saline or BM-MNC were injected. Six weeks later, MI scars were slightly smaller and thicker, and cardiac dilatation was just partially prevented by cell therapy. However, the cardiac performance under hemodynamic stress was totally preserved in the BM-MNC treated group if compared to the untreated group, associated with normal contractility of remote myocardium as analyzed in vitro. The impaired post-rest potentiation of contractile force, associated with decreased protein expression of the sarcoplasmic reticulum Ca2 +-ATPase and phosphorylated-phospholamban and overexpression of Na(+)/Ca(2 +) exchanger, were prevented by BM-MNC, indicating preservation of the Ca(2 +) handling. Finally, pathological changes on remodeled remote tissue such as myocyte hypertrophy, interstitial fibrosis and capillary rarefaction were also mitigated by cell therapy. Conclusions: BM-MNC therapy was able to prevent cardiac structural and molecular remodeling after MI, avoiding pathological changes on Ca(2 +)-handling proteins and preserving contractile behavior of the viable myocardium, which could be the major contributor to the improvements of global cardiac performance after cell transplantation despite that scar tissue still exists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold