967 resultados para IGF-I and cell migration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Many studies have been published outlining the global effects of 17 beta-estradiol (E2) on gene expression in human epithelial breast cancer derived MCF-7 cells. These studies show large variation in results, reporting between ~100 and ~1500 genes regulated by E2, with poor overlap. RESULTS: We performed a meta-analysis of these expression studies, using the Rank product method to obtain a more accurate and stable list of the differentially expressed genes, and of pathways regulated by E2. We analyzed 9 time-series data sets, concentrating on response at 3-4 hrs (early) and at 24 hrs (late). We found >1000 statistically significant probe sets after correction for multiple testing at 3-4 hrs, and >2000 significant probe sets at 24 hrs. Differentially expressed genes were examined by pathway analysis. This revealed 15 early response pathways, mostly related to cell signaling and proliferation, and 20 late response pathways, mostly related to breast cancer, cell division, DNA repair and recombination. CONCLUSIONS: Our results show that meta-analysis identified more differentially expressed genes than the individual studies, and that these genes act together in networks. These results provide new insight into E2 regulated mechanisms, especially in the context of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been growing interest in the question of how the particular topology of polymeric chains affects their overall dimensions and physical behavior. The majority of relevant studies are based on numerical simulation methods or analytical treatment; however, both these approaches depend on various assumptions and simplifications. Experimental verification is clearly needed but was hampered by practical difficulties in obtaining preparative amounts of knotted or catenated polymers with predefined topology and precisely set chain length. We introduce here an efficient method of production of various single-stranded DNA knots and catenanes that have the same global chain length. We also characterize electrophoretic migration of the produced single-stranded DNA knots and catenanes with increasing complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RelA (NF-kappaB) is a transcription factor inducible by distinct stimuli in many different cell types. To find new cell type specific cofactors of NF-kappaB dependent transcription, we isolated RelA transcription activation domain binding proteins from the nuclear extracts of three different cell types. Analysis by electrophoresis and liquid chromatography tandem mass spectrometry identified several novel putative molecular partners. Some were strongly enriched in the complex formed from the nuclear extracts of specific cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the results of closed and open grade I and II tibial shaft fractures treated by reamed nail and unreamed nailing. SUBJECTS AND METHODS: Between 1997 and 2000, 119 patients with tibial shaft fractures were treated with reamed tibial nails. Postoperatively 96 patients (70 closed and 26 grade I and II open fractures) were followed clinically and radiologically for up to 18 months. The nail was inserted either by patellar tendon splitting or by nonsplitting technique. The nail was inserted after overreaming by 1.5 mm. Postoperatively, patients with isolated tibial fracture were mobilized by permitting partial weight bearing on the injured leg for 6 weeks. Patients with associated ankle fractures were allowed to walk with a Sarmiento cast. RESULTS: Postoperatively, 6 (6.3%) patients developed a compartment syndrome after surgery. In 48 (50%) cases, dynamization of the nail was carried out after a mean period of 12 weeks for delayed union. Overall, a 90.6% union was obtained at a mean of 24 weeks without difference between closed or open fractures. Two (2.1%) patients with an open grade II fracture developed a deep infection requiring treatment. A 9.4% rate of malunion was observed. Eight (8.3%) patients developed screw failure without clinical consequences. At the last follow-up, 52% of patients with patellar tendon splitting had anterior knee pain, compared to those (14%) who did not have tendon splitting. CONCLUSION: Reamed intramedullary nail is a suitable implant in treating closed as well as grade I and II open tibial shaft fractures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain typical gait characteristics such as foot-drop and foot supination are well described in Charcot-Marie-Tooth disease. These are directly related to the primary disease and due to the weakness of ankle dorsiflexors and everters characteristic of this hereditary neuropathy. We analysed 16 subjects aged 8-52 years old (11 with type I, 5 with type II Charcot-Marie-Tooth disease) using three-dimensional gait analysis and identified kinematic features previously unreported. These patients showed a combination of tight tendo achillei, foot-drop, failure of plantar flexion and increased foot supination, but also presented with excessive internal rotation of the knee and/or tibia, knee hyperextension in stance, excessive external rotation at the hips and decreased hip adduction in stance (typical of a broad based gait). These proximal features could have been an adaptation to or consequence of the disrupted ankle and foot biomechanics, however a direct relation to the neuropathy is also possible since sub-normal muscle power was observed at the proximal levels in most subjects on both manual testing and kinetic analysis. Gait analysis is a useful tool in defining the characteristic gait of patients with Charcot-Marie-Tooth disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various site-specific recombination enzymes produce different types of knots or catenanes while acting on circular DNA in vitro and in vivo. By analysing the types of knots or links produced, it is possible to reconstruct the order of events during the reaction and to deduce the molecular "architecture" of the complexes that different enzymes form with DNA. Until recently it was necessary to use laborious electron microscopy methods to identify the types of knots or catenanes that migrate in different bands on the agarose gels used to analyse the products of the reaction. We reported recently that electrophoretic migration of different knots and catenanes formed on the same size DNA molecules is simply related to the average crossing number of the ideal representations of the corresponding knots and catenanes. Here we explain this relation by demonstrating that the expected sedimentation coefficient of randomly fluctuating knotted or catenated DNA molecules in solution shows approximately linear correlation with the average crossing number of ideal configurations of the corresponding knots or catenanes.