989 resultados para Humic fractions
Resumo:
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In vitro evaluation of alkaloidal fractions of twigs, barks and leaves from two Unonopsis species, Unonopsis guatterioides R.E. Fr. and Unonopsis duckei R.E. Fr., Annonaceae, against promastigote forms of Leishmania amazonensis revealed these species as sources of substances with promising leishmanicidal potential. All alkaloidal fractions from twigs, barks and leaves of U. guatterioides were classified as highly active, with IC50 1.07, 1.90, and 2.79 mg/mL, respectively. Only the alkaloidal fraction from the twigs of U. duckei was classified as inactive.
Resumo:
As concentrações de 39 compostos orgânicos foram determinadas em três frações (cabeça, coração e cauda) obtidas da destilação em alambique do caldo de cana fermentado. Os resultados foram avaliados utilizando-se análise de variância (ANOVA), teste de Tukey, análise de componentes principais (PCA), agrupamento hierárquico (HCA) e análise discriminante linear (LDA). De acordo com PCA e HCA, os dados experimentais conduzem à formação de três agrupamentos. As frações de cabeça deram origem a um grupo mais definido. As frações coração e cauda apresentaram alguma sobreposição coerente com sua composição em ácidos. As habilidades preditivas de calibração e validação dos modelos gerados pela LDA para a classificação das três frações foram de 90,5 e 100%, respectivamente. Este modelo reconheceu como coração doze de treze cachaças comerciais (92,3%) com boas características sensoriais, apresentando potencial para a orientação do processo de cortes.
Resumo:
The objective of this study was to evaluate, in Nellore heifers, intake and digestibility of hydrolyzed sugarcane stored for different periods. The experimental design used was a 4 × 4 Latin square, four diets, four Nellore heifers with ruminal cannulas (initial body weight 285.4±23.08 kg and average initial age 14 months) and four periods of 21 days. The diets were composed by fresh sugarcane (time zero) or hydrolyzed sugarcane with addition of 0.5% of hydrated lime, stored for 24, 48 or 72 hours, as the unique forage. Intake and digestibility of feed fractions, nitrogen balance, microbial synthesis efficiency, total number of ruminal protozoans and ammoniacal nitrogen did not significantly change by storing sugarcane with addition of 0.5% of hydrated lime. Sugarcane pH varied quadratically for storage time, with maximum pH of 7.02 after 24 hours from lime addition. Ruminal liquid pH values were higher for heifers fed fresh sugarcane, in comparison with those fed hydrolyzed sugarcane. Sugarcane treated with 0.5% of hydrated lime stored for up to 72 hours does not change ruminal digestion to alter the amount of feed consumed by pubescent Nellore heifers. Thus, lime is a viable technology, once it allows long-duration storage and bee control on treated forage, which contributes to animal feeding logistics.
Resumo:
LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.
Resumo:
Mercury (Hg) pollution is a global environmental problem. Numerous Hg-contaminated sites exist in the world and new techniques for remediation are urgently needed. Phytoremediation, use of plants to remove pollutants from the environment or to render them harmless, is considered as an environment-friendly method to remediate contaminated soil in-situ and has been applied for some other heavy metals. Whether this approach is suitable for remediation of Hg-contaminated soil is, however, an open question. The aim of this thesis was to study the fate of Hg in terrestrial plants (particularly the high biomass producing willow, Salix spp.) and thus to clarify the potential use of plants to remediate Hg-contaminated soils. Plants used for phytoremediation of Hg must tolerate Hg. A large variation (up to 30-fold difference) was detected among the six investigated clones of willow in their sensitivity to Hg as reflected in their empirical toxicity threshold (TT95b), the maximum unit toxicity (UTmax) and EC50 levels. This gives us a possibility to select Hg-tolerant willow clones to successfully grow in Hgcontaminated soils for phytoremediation. Release of Hg into air by plants is a concern when using phytoremediation in practice. No evidence was found in this study that Hg was released to the air via shoots of willow, garden pea (Pisum sativum L. cv Faenomen), spring wheat (Triticum aestivum L. cv Dragon), sugar beet (Beta vulgaris L. cv Monohill), oil-seed rape (Brassica napus L. cv Paroll) and white clover (Trifolium repens L.). Thus, we conclude that the Hg burden to the atmosphere via phytoremediation is not increased. Phytoremediation processes are based on the ability of plant roots to accumulate Hg and to translocate it to the shoots. Willow roots were shown to be able to efficiently accumulate Hg in hydroponics, however, no variation in the ability to accumulate was found among the eight willow clones using CVAAS to analyze Hg content in plants. The majority of the Hg accumulated remained in the roots and only 0.5-0.6% of the Hg accumulation was translocated to the shoots. Similar results were found for the five common cultivated plant species mentioned above. Moreover, the accumulation of Hg in willow was higher when being cultivated in methyl-Hg solution than in inorganic Hg solution, whereas the translocation of Hg to the shoots did not differ. The low bioavailability of Hg in contaminated soil is a restricting factor for the phytoextraction of Hg. A selected tolerant willow clone was used to study whether iodide addition could increase the plant-accumulation of Hg from contaminated soil. Both pot tests and field trials were carried out. Potassium iodide (KI) addition was found to mobilize Hg in contaminated soil and thus increase the bioavailability of Hg in soils. Addition of KI (0.2–1 mM) increased the Hg concentrations up to about 5, 3 and 8 times in the leaves, branches and roots, respectively. However, too high concentrations of KI were toxic to plants. As the majority of the Hg accumulated in the roots, it might be unrealistic to use willow for phytoextraction of Hg in practice, even though iodide could enhance the phytoextraction efficiency. In order to study the effect of willow on various soil fractions of Hg-contaminated soil, a 5-step sequential soil extraction method was used. Both the largest Hg-contaminated fractions, i.e. the Hg bound to residual organic matter (53%) and sulphides (43%), and the residual fraction (2.5%), were found to remain stable during cultivations of willow. The exchangeable Hg (0.1%) and the Hg bound to humic and fulvic acids (1.1%) decreased in the rhizospheric soil, whereas the plant accumulation of Hg increased with the cultivation time. The sum of the decrease of the two Hg fractions in soils was approximately equal to the amount of the Hg accumulated in plants. Consequently, plants may be suitable for phytostabilization of aged Hg-contaminated soil, in which root systems trap the bioavailable Hg and reduce the leakage of Hg from contaminated soils.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Die Elemente Uran und Plutonium besitzen seit Entdeckung der Kernspaltung und der technischen Nutzung der Kernenergie eine globale Bedeutung. So trägt Pu hauptsächlich zur Radiotoxizität von abgebrannten Brennelementen bei und erfordert im Falle einer Endlagerung in einer tiefen geologischen Formation einen sicheren Verschluss für bis zu einer Million Jahre. Das Wissen über die vorliegenden chemischen Spezies ist dabei entscheidend für das Verständnis der chemisch-physikalischen Wechselwirkungen im jeweiligen geochemischen System, insbesondere mit dem Wirtsgestein (hier Ton) und den allgegenwärtigen Huminstoffen (hier Fulvinsäure). Längerfristig sind so Vorhersagen über einen Transport des hochradioaktiven Abfalls nach Auslaugung und Austritt aus einem Endlager bis in die Biosphäre möglich. Gerade der Ultraspurenbereich, im Fernfeld eines Endlagers zu erwarten, ist dabei von besonderem Interesse. Darüber hinaus machen nuklearforensische Untersuchungen – in Hinblick auf illegal benutztes Nuklearmaterial, Schmuggel oder Nuklearterrorismus – zur Bestimmung der Herkunft, des Alters oder der Radiotoxizität isotopenselektive Nachweismethoden im Ultraspurenbereich notwendig. Im Rahmen dieser Arbeit wurden hierfür die Resonanzionisationsmassenspektrometrie (RIMS) zur isotopenselektiven Spuren- und Ultraspurenanalyse von U und Pu sowie die Kapillarelektrophorese (CE) gekoppelt an die induktiv gekoppelte Plasma (ICP)-Massenspektrometrie (CE-ICP-MS) zur Speziation von Pu eingesetzt. Für den isotopenselektiven Nachweis von Ultraspurenmengen von Uran mittels RIMS wurden vorbereitende Studien durchgeführt und mehrere zweifach resonante Anregungsleitern mit nicht-resonanter Ionisation untersucht. Eine Effizienz von ca. 10^-10 bei einer Nachweisgrenze von 10^12 Atomen U-238 konnte erzielt werden. In Zusammenarbeit mit dem Institut für Radiochemie, TU München, wurde mittels RIMS die Isotopenzusammensetzung von Plutonium, abgetrennt aus einem panzerbrechenden Urangeschoss aus dem Kosovokonflikt, bestimmt und dieses als Waffenplutonium mit einem Gehalt von 15 pg Pu-239/g Uran identifiziert. Rückschlüsse über Herkunft und Alter des Plutoniums konnten daraus gewonnen werden. Für Studien zur Umweltüberwachung von Plutonium in Rheinland-Pfalz wurden Grund-, Oberflächen- und Klärwasserproben mittels RIMS untersucht. Oberhalb der Nachweisgrenze von ca. 10^7 Atomen Pu-239/500 mL konnte kein signifikanter Gehalt bestimmt werden. Zusätzlich wurden Klärschlammproben untersucht, wobei in einer Probe 5,1*10^7 Atome Pu-239/g gemessen wurde, was auf eine Anreicherung von Pu im Klärschlamm aus großen Wasservolumina hindeuten könnte. Speziationsuntersuchungen von Plutonium in Kontakt mit Fulvinsäure und dem Tonmineral Kaolinit wurden in Hinblick auf die Wechselwirkungen im Umfeld eines nuklearen Endlagers durchgeführt. Die Redoxkinetik von Pu(VI) in Kontakt mit Gorleben-Fulvinsäure zeigt eine mit steigendem pH zunehmend schnellere und vollständige Reduktion und ein vergleichbares Verhalten zur Huminsäure. Für ein Plutoniumgemisch aus allen vier umweltrelevanten Oxidationsstufen in Kontakt mit Gorleben-Fulvinsäure konnte nach ca. 1 Monat Kontaktzeit eine fasst vollständige Reduktion zum tri- und tetravalenten Pu beobachtet werden. Sorptionsuntersuchungen der stabilsten Oxidationsstufe, Pu(IV), in Kontakt mit Kaolinit bei pH = 0 bis 13 im Konzentrationsbereich 10^-7 bis 10^-9 mol/L verdeutlichen das ausgeprägte Sorptionsverhalten von Pu(IV) (ca. 60% bis 90% Sorption) im umweltrelevanten pH-Bereich bei einem Einsetzen der Sorption bei pH = 0 bis 2. Im Rahmen des "Colloid and Radionuclide Retardation" (CRR) Experiments im Felslabor Grimsel, Schweizer Alpen, wurde in Zusammenarbeit mit dem Institut für Nukleare Entsorgung, Karlsruhe, die kolloidgetragene Migration von Pu(IV) in einem Grundwasserstrom durch Scherzonen im Granitgestein unter umweltrelevanten Bedingungen untersucht. Bei Zugabe von im Grundwasser stabilen Bentonitkolloiden – Bentonit wird als ein geeignetes Verschlussmaterial für nukleare Abfälle erforscht – konnte ein erhöhter Transport des Pu(IV) beobachtet werden, der durch Sorption des Pu an die mobilen Kolloide hervorgerufen wird. Zur Speziation von Plutonium im Ultraspurenbereich wurde im Rahmen dieser Arbeit an der Entwicklung der Kopplung der CE mit der sehr sensitiven RIMS gearbeitet. Das Prinzip der offline-Kopplung basiert auf dem Sammeln der zu unterschiedlichen Zeiten am Ende der Kapillare eluierten Oxidationsstufen in einzelnen Fraktionen. Aus jeder Fraktion wird ein eigenes Filament hergestellt und mit RIMS auf seinen Plutoniumgehalt untersucht. Eine erste Validierung der Methode konnte durch Bestimmung der Oxidationsstufenzusammensetzung eines bekannten Gemischs erfolgreich für einen Gehalt von ca. 6*10^9 Atome Pu-239 durchgeführt werden. Dies stellt einen möglichen Zugang zu dem erwarteten Konzentrationsbereich im Fernfeld eines Endlagers dar.
Resumo:
For the safety assessments of nuclear waste repositories, the possible migration of the radiotoxic waste into environment must be considered. Since plutonium is the major contribution at the radiotoxicity of spent nuclear waste, it requires special care with respect to its mobilization into the groundwater. Plutonium has one of the most complicated chemistry of all elements. It can coexist in 4 oxidation states parallel in one solution. In this work is shown that in the presence of humic substances it is reduced to the Pu(III) and Pu(IV). This work has the focus on the interaction of Pu(III) with natural occurring compounds (humic substances and clay minerals bzw. Kaolinite), while Pu(IV) was studied in a parallel doctoral work by Banik (in preparation). As plutonium is expected under extreme low concentrations in the environment, very sensitive methods are needed to monitor its presence and for its speciation. Resonance ionization mass spectrometry (RIMS), was used for determining the concentration of Pu in environmental samples, with a detection limit of 106- 107 atoms. For the speciation of plutonium CE-ICP-MS was routinely used to monitor the behaviour of Pu in the presence of humic substances. In order to reduce the detection limits of the speciation methods, the coupling of CE to RIMS was proposed. The first steps have shown that this can be a powerful tool for studies of pu under environmental conditions. Further, the first steps in the coupling of two parallel working detectors (DAD and ICP_MS ) to CE was performed, for the enabling a precise study of the complexation constants of plutonium with humic substances. The redox stabilization of Pu(III) was studied and it was determined that NH2OHHCl can maintain Pu(III) in the reduced form up to pH 5.5 – 6. The complexation constants of Pu(III) with Aldrich humic acid (AHA) were determined at pH 3 and 4. the logß = 6.2 – 6.8 found for these experiments was comparable with the literature. The sorption of Pu(III) onto kaolinite was studied in batch experiments and it was determine dthat the pH edge was at pH ~ 5.5. The speciation of plutonium on the surface of kaolinite was studied by EXAFS/XANES. It was determined that the sorbed species was Pu(IV). The influence of AHA on the sorption of Pu(III) onto kaolinite was also investigated. It was determined that at pH < 5 the adsorption is enhanced by the presence of AHA (25 mg/L), while at pH > 6 the adsorption is strongly impaired (depending also on the adding sequence of the components), leading to a mobilization of plutonium in solution.
Resumo:
Plutonium represents the major contribution to the radiotoxicity of spent nuclear fuel over storage times of up to several hundred thousand years. The speciation of plutonium in aquifer systems is important in order to assess the risks of high-level nuclear waste disposal and to acquire a deep knowledge of the mobilization and immobilization behavior of plutonium. In aqueous solutions, plutonium can coexist in four oxidation states and each one of them has different chemical and physical behavior. Tetravalent plutonium is the most abundant under natural conditions. Therefore, detailed speciation studies of tetravalent plutonium in contact with humic substances (HS) and kaolinite as a model clay mineral have been performed in this work. Plutonium is present in the environment at an ultratrace level. Therefore, speciation of Pu at the ultratrace level is mandatory. Capillary electrophoresis (CE) coupled to resonance ionization mass spectrometry (RIMS) was used as a new speciation method. CE-RIMS enables to improve the detection limit for plutonium species by 2 to 3 orders of magnitude compared to the previously developed CE-ICP-MS. For understanding the behavior of Pu(IV) in aqueous systems, redox reactions, complexation, and sorption behavior of plutonium were studied. The redox behavior of plutonium in contact with humic acid (HA) and fulvic acid (FA) was investigated. A relatively fast reduction of Pu(VI) in contact with HS was observed. It was mainly reduced to Pu(IV) and Pu(III) within a couple of weeks. The time dependence of the Pu(IV) complexation with Aldrich HA was investigated and a complex constant (logßLC) between 6.4 - 8.4 of Pu(IV) was determined by means of ultrafiltration taking into account the loading capacity (LC). The sorption of tetravalent plutonium onto kaolinite was investigated as a function of pH in batch experiments under aerobic and anaerobic conditions. The sorption edge was found at about pH = 1 and a maximum sorption at around pH = 8.5. In the presence of CO2 at pH > 8.5, the sorption of plutonium was decreased probably due to the formation of soluble carbonate complexes. For comparison, the sorption of Th(IV) onto kaolinite was also investigated and consistent results were found. The Pu(IV) sorption onto kaolinite was studied by XANES and EXAFS at pH 1, 4, 9 and the sorbed species on kaolinite surface was Pu(IV). Depending on the pH, only 1 - 10 % of the sorbed plutonium is desorbed from kaolinite and released into a fresh solution at the same pH value. Furthermore, the sorption of HS onto kaolinite was studied as a function of pH at varying concentrations of HS, as a prerequisite to understand the more complex ternary system. The sorption of HA onto kaolinite was found to be higher than that of FA. The investigation of the ternary systems (plutonium-kaolinite-humic substances) is performed as a function of pH, concentration of HS, and the sequences of adding the reactants. The presence of HS strongly influences the sorption of Pu(IV) onto kaolinite over the entire pH range. For comparison, the influence of HS on the sorption of Th(IV) onto kaolinite was also investigated and a good agreement with the results of Pu(IV) was obtained.
Resumo:
Charmless charged two-body B decays are sensitive probes of the CKM matrix, that parameterize CP violation in the Standard Model (SM), and have the potential to reveal the presence of New Physics. The framework of CP violation within the SM, the role of the CKM matrix, with its basic formalism, and the current experimental status are presented. The theoretical tools commonly used to deal with hadronic B decays and an overview of the phenomenology of charmless two-body B decays are outlined. LHCb is one of the four main experiments operating at the Large Hadron Collider (LHC), devoted to the measurement of CP violation and rare decays of charm and beauty hadrons. The LHCb detector is described, focusing on the technologies adopted for each sub-detector and summarizing their performances. The status-of-the-art of the LHCb measurements with charmless two-body B decays is then presented. Using the 37/pb of integrated luminosity collected at sqrt(s) = 7 TeV by LHCb during 2010, the direct CP asymmetries ACP(B0 -> Kpi) = −0.074 +/- 0.033 +/- 0.008 and ACP(Bs -> piK) = 0.15 +/- 0.19 +/- 0.02 are measured. Using 320/pb of integrated luminosity collected during 2011 these measurements are updated to ACP(B0 -> Kpi) = −0.088 +/- 0.011 +/- 0.008 and ACP(Bs -> piK) = 0.27 +/- 0.08 +/- 0.02. In addition, the branching ratios BR(B0 -> K+K-) = (0.13+0.06-0.05 +/- 0.07) x 10^-6 and BR(Bs -> pi+pi-) = (0.98+0.23-0.19 +/- 0.11) x 10^-6 are measured. Finally, using a sample of 370/pb of integrated luminosity collected during 2011, the relative branching ratios BR(B0 -> pi+pi-)/BR(B0 -> Kpi) = 0.262 +/- 0.009 +/- 0.017, (fs/fd)BR(Bs -> K+K-)/BR(B0 -> Kpi)=0.316 +/- 0.009 +/- 0.019, (fs/fd)BR(Bs -> piK)/BR(B0 -> Kpi) = 0.074 +/- 0.006 +/- 0.006 and BR(Lambda_b -> ppi)/BR(Lambda_b -> pK)=0.86 +/- 0.08 +/- 0.05 are determined.
Resumo:
For the safety assessment of radioactive waste, the possibility of radionuclide migration has to be considered. Since Np (and also Th due to the long-lived 232-Th) will be responsible for the greatest amount of radioactivity one million years after discharge from the reactor, its (im)-mobilization in the geosphere is of great importance. Furthermore, the chemistry of Np(V) is quite similar (but not identical) to the chemistry of Pu(V). Three species of neptunium may be found in the near field of the waste disposal, but pentavalent neptunium is the most abundant species under a wide range of natural conditions. Within this work, the interaction of Np(V) with the clay mineral montmorillonite and melanodins (as model substances for humic acids) was studied. The sorption of neptunium onto gibbsite, a model clay for montmorillonite, was also investigated. The sorption of neptunium onto γ-alumina and montmorillonite was studied in a parallel doctoral work by S. Dierking. Neptunium is only found in ultra trace amounts in the environment. Therefore, sensitive and specific methods are needed for its determination. The sorption was determined by γ spectroscopy and LSC for the whole concentration range studied. In addition the combination of these techniques with ultrafiltration allowed the study of Np(V) complexation with melanoidins. Regrettably, the available speciation methods (e.g. CE-ICP-MS and EXAFS) are not capable to detect the environmentally relevant neptunium concentrations. Therefore, a combination of batch experiments and speciation analyses was performed. Further, the preparation of hybrid clay-based materials (HCM) montmorillonitemelanoidins for sorption studies was achieved. The formation of hybrid materials begins in the interlayers of the montmorillonite, and then the organic material spreads over the surface of the mineral. The sorption of Np onto HCM was studied at the environmentally relevant concentrations and the results obtained were compared with those predicted by the linear additive model by Samadfam. The sorption of neptunium onto gibbsite was studied in batch experiments and the sorption maximum determined at pH~8.5. The sorption isotherm pointed to the presence of strong and weak sorption sites in gibbsite. The Np speciation was studied by using EXAFS, which showed that the sorbed species was Np(V). The influence of M42 type melanodins on the sorption of Np(V) onto montmorillonite was also investigated at pH 7. The sorption of the melanoidins was affected by the order in which the components were added and by ionic strength. The sorption of Np was affected by ionic strength, pointing to outer sphere sorption, whereas the presence of increasing amounts of melanoidins had little influence on Np sorption.
Resumo:
Copper and Zn are essential micronutrients for plants, animals, and humans; however, they may also be pollutants if they occur at high concentrations in soil. Therefore, knowledge of Cu and Zn cycling in soils is required both for guaranteeing proper nutrition and to control possible risks arising from pollution.rnThe overall objective of my study was to test if Cu and Zn stable isotope ratios can be used to investigate into the biogeochemistry, source and transport of these metals in soils. The use of stable isotope ratios might be especially suitable to trace long-term processes occurring during soil genesis and transport of pollutants through the soil. In detail, I aimed to answer the questions, whether (1) Cu stable isotopes are fractionated during complexation with humic acid, (2) 65Cu values can be a tracer for soil genetic processes in redoximorphic soils (3) 65Cu values can help to understand soil genetic processes under oxic weathering conditions, and (4) 65Cu and 66Zn values can act as tracers of sources and transport of Cu and Zn in polluted soils.rnTo answer these questions, I ran adsorption experiments at different pH values in the laboratory and modelled Cu adsorption to humic acid. Furthermore, eight soils were sampled representing different redox and weathering regimes of which two were influenced by stagnic water, two by groundwater, two by oxic weathering (Cambisols), and two by podzolation. In all horizons of these soils, I determined selected basic soil properties, partitioned Cu into seven operationally defined fractions and determined Cu concentrations and Cu isotope ratios (65Cu values). Finally, three additional soils were sampled along a deposition gradient at different distances to a Cu smelter in Slovakia and analyzed together with bedrock and waste material from the smelter for selected basic soil properties, Cu and Zn concentrations and 65Cu and 66Zn values.rnMy results demonstrated that (1) Copper was fractionated during adsorption on humic acid resulting in an isotope fractionation between the immobilized humic acid and the solution (65CuIHA-solution) of 0.26 ± 0.11‰ (2SD) and that the extent of fractionation was independent of pH and involved functional groups of the humic acid. (2) Soil genesis and plant cycling causes measurable Cu isotope fractionation in hydromorphic soils. The results suggested that an increasing number of redox cycles depleted 63Cu with increasing depth resulting in heavier 65Cu values. (3) Organic horizons usually had isotopically lighter Cu than mineral soils presumably because of the preferred uptake and recycling of 63Cu by plants. (4) In a strongly developed Podzol, eluviation zones had lighter and illuviation zones heavier 65Cu values because of the higher stability of organo-65Cu complexes compared to organo-63Cu complexes. In the Cambisols and a little developed Podzol, oxic weathering caused increasingly lighter 65Cu values with increasing depth, resulting in the opposite depth trend as in redoximorphic soils, because of the preferential vertical transport of 63Cu. (5) The 66Zn values were fractionated during the smelting process and isotopically light Zn was emitted allowing source identification of Zn pollution while 65Cu values were unaffected by the smelting and Cu emissions isotopically indistinguishable from soil. The 65Cu values in polluted soils became lighter down to a depth of 0.4 m indicating isotope fractionation during transport and a transport depth of 0.4 m in 60 years. 66Zn values had an opposite depth trend becoming heavier with depth because of fractionation by plant cycling, speciation changes, and mixing of native and smelter-derived Zn. rnCopper showed measurable isotope fractionation of approximately 1‰ in unpolluted soils, allowing to draw conclusions on plant cycling, transport, and redox processes occurring during soil genesis and 65Cu and 66Zn values in contaminated soils allow for conclusions on sources (in my study only possible for Zn), biogeochemical behavior, and depth of dislocation of Cu and Zn pollution in soil. I conclude that stable Cu and Zn isotope ratios are a suitable novel tool to trace long-term processes in soils which are difficult to assess otherwise.rn