858 resultados para Hospitality Research: How to Plan


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a new method to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model (“kinetic model-free procedure”). It is a new non-steady-state kinetic characterization procedure for heterogeneous catalysts. The mathematical foundation of the Y-procedure is a Laplace-domain analysis of the two inert zones in a TZTR followed by transposition to the Fourier domain. When combined with time discretization and filtering the Y-procedure leads to an efficient practical method for reconstructing the concentration and reaction rate in the active zone. Using the Y-procedure the concentration and reaction rate of a non-steady state catalytic process can be determined without any pre-assumption regarding the type of kinetic dependence. The Y-procedure is the basis for advanced software for non-steady state kinetic data interpretation. The Y-procedure can be used to relate changes in the catalytic reaction rate and kinetic parameters to changes in the surface composition (storage) of a catalyst.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article looks at the child’s right to freedom of expression under UN treaties. It defines the legal basis, the scope and the extent of the child’s right and it compares it with the adult’s right to freedom of expression. It argues that freedom of expression has both a developmental and an autonomy aspect, and that Article 12 UNCRC does a better job at encapsulating the child’s right than Article 13. It concludes that the child’s right is very much based on the positive obligations of the state, to the difference of traditional international law on freedom of expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suddenly changing direction requires a whole body reorientation strategy. In sporting duels such as an attacker vs. a defender in rugby, successful body orientation/reorientation strategies are essential for successful performance. The aim of this study is to examine which biomechanical factors, while taking into account biomechanical constraints, are used by an attacker in a 1 vs. 1 duel in rugby. More specifically we wanted to examine how an attacker tries to deceive the defender yet disguise his intentions by comparing effective deceptive movements (DM+), ineffective deceptive movements (DM-), and non-deceptive movements (NDM). Eight French amateur expert rugby union players were asked to perform DMs and NDMs in a real 1 vs. 1 duel. For each type of movement (DM+, DM-, NDM) different relevant orientation/reorientation parameters, medio-lateral displacement of the center of mass (COM), foot, head, upper trunk, and lower trunk yaw; and upper trunk roll were analyzed and compared. Results showed that COM displacement and lower trunk yaw were minimized during DMs while foot displacement along with head and upper trunk yaw were exaggerated during DMs (DM+ and DM-). This would suggest that the player is using exaggerated body-related information to consciously deceive the defender into thinking he will run in a given direction while minimizing other postural control parameters to disguise a sudden change in posture necessary to modify final running direction. Further analysis of the efficacy of deceptive movements showed how the disguise and deceit strategies needed to be carefully balanced to successfully fool the defender. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baited cameras are often used for abundance estimation wherever alternative techniques are precluded, e.g. in abyssal systems and areas such as reefs. This method has thus far used models of the arrival process that are deterministic and, therefore, permit no estimate of precision.
Furthermore, errors due to multiple counting of fish and missing those not seen by the camera have restricted the technique to using only the time of first arrival, leaving a lot of data redundant. Here, we reformulate the arrival process using a stochastic model, which allows the precision of abundance
estimates to be quantified. Assuming a non-gregarious, cross-current-scavenging fish, we show that prediction of abundance from first arrival time is extremely uncertain. Using example data, we show
that simple regression-based prediction from the initial (rising) slope of numbers at the bait gives good precision, accepting certain assumptions. The most precise abundance estimates were obtained
by including the declining phase of the time series, using a simple model of departures, and taking account of scavengers beyond the camera’s view, using a hidden Markov model.