901 resultados para Histocompatibility Proteins
Resumo:
The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.
Resumo:
In Xenopus laevis four estrogen-responsive genes are expressed simultaneously to produce vitellogenin, the precursor of the yolk proteins. One of these four genes, the gene A2, was sequenced completely, as well as cDNAs representing 75% of the coding region of the gene. From this data the exon-intron structure of the gene was established, revealing 35 exons that give a transcript of 5,619 bp without the poly A-tail. This A2 transcript encodes a vitellogenin of 1,807 amino acids, whose structure is discussed with respect to its function. At the nucleic acid as well as at the protein level no extensive homologies with any sequences other than vitellogenin were observed. Comparison of the amino acid sequence of the vitellogenin A2 molecule with biochemical data obtained from the different yolk proteins allowed us to localize the cleavage products on the vitellogenin precursor as follows: NH2 - lipovitellin I - phosvitin (or phosvette II - phosvette I) - lipovitellin II - COOH.
Resumo:
The plasma concentrations of alpha 1-acid glycoprotein (AAG), albumin, triglycerides, cholesterol, and total proteins, as well as the plasma binding of racemic, d-methadone, and l-methadone were measured in 45 healthy subjects. The AAG phenotypes and the concentrations of AAG variants were also determined. The measured free fractions for racemic, d-methadone, and l-methadone were, respectively, 12.7% +/- 3.3%, 10.0% +/- 2.9%, and 14.2% +/- 3.2% (mean +/- SD). A significant correlation was obtained between the binding ratio (B/F) for dl-methadone and the total AAG concentration (r = 0.724; p less than 0.001). A multiple stepwise regression analysis showed that AAG was the main explanatory variable for the binding of the racemate. When concentrations of AAG variants were considered, a significant correlation was obtained between the binding ratio of dl-methadone and orosomucoid2 A concentration (r = 0.715; p less than 0.001), a weak correlation between dl-methadone and orosomucoid1 S concentration (r = 0.494; p less than 0.001), and no correlation between dl-methadone and orosomucoid1 F1 concentration (r = 0.049; not significant). Similar findings were obtained with the enantiomers. This study shows the importance of considering not only total AAG but also concentrations of AAG variants when measuring the binding of methadone and possibly of other drugs in plasma.
Resumo:
The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
More than one hundred years ago the "protein hypothesis" of the pathogenesis of atherosclerosis and its association with cardiovascular disease was put forward on the basis of animal experiments; however, it has so far never been verified in humans. This theory was soon replaced by the "lipid hypothesis", which was confirmed in humans as of 1994. Epidemiological ecological studies in the 1960 s showed significant associations between dietary animal protein and mortality from cardiovascular disease. However, animal protein intake was also significantly correlated with saturated fatty acid and cholesterol intake. In the last decades two prospective cohort studies demonstrated a decreased cardiovascular risk in women during high- versus low-protein intake when adjusting for other dietary factors (e. g., saturated fats) and other cardiovascular risk factors. A direct cholesterol lowering effect of proteins has not been shown. Despite earlier research indicating that soy protein has cardioprotective effects as compared to other proteins, these observations have not been confirmed by randomized placebo-controlled trials. However, most experts recommend the consumption of foods rich in plant proteins as alternatives to meat and dairy products rich in saturated fat and containing cholesterol. There are no scientific arguments to increase the daily protein intake to more than 20 % of total energy intake as recommended by the guidelines, in order to improve cardiovascular health.
Resumo:
PURPOSE: To redirect an ongoing antiviral T-cell response against tumor cells in vivo, we evaluated conjugates consisting of antitumor antibody fragments coupled to class I MHC molecules loaded with immunodominant viral peptides. EXPERIMENTAL DESIGN: First, lymphochoriomeningitis virus (LCMV)-infected C57BL/6 mice were s.c. grafted on the right flank with carcinoembryonic antigen (CEA)-transfected MC38 colon carcinoma cells precoated with anti-CEA x H-2D(b)/GP33 LCMV peptide conjugate and on the left flank with the same cells precoated with control anti-CEA F(ab')(2) fragments. Second, influenza virus-infected mice were injected i.v., to induce lung metastases, with HER2-transfected B16F10 cells, coated with either anti-HER2 x H-2D(b)/NP366 influenza peptide conjugates, or anti-HER2 F(ab')(2) fragments alone, or intact anti-HER2 monoclonal antibody. Third, systemic injections of anti-CEA x H-2D(b) conjugates with covalently cross-linked GP33 peptides were tested for the growth inhibition of MC38-CEA(+) cells, s.c. grafted in LCMV-infected mice. RESULTS: In the LCMV-infected mice, five of the six grafts with conjugate-precoated MC38-CEA(+) cells did not develop into tumors, whereas all grafts with F(ab')(2)-precoated MC38-CEA(+) cells did so (P = 0.0022). In influenza virus-infected mice, the group injected with cells precoated with specific conjugate had seven times less lung metastases than control groups (P = 0.0022 and P = 0.013). Most importantly, systemic injection in LCMV-infected mice of anti-CEA x H-2D(b)/cross-linked GP33 conjugates completely abolished tumor growth in four of five mice, whereas the same tumor grew in all five control mice (P = 0.016). CONCLUSION: The results show that a physiologic T-cell antiviral response in immunocompetent mice can be redirected against tumor cells by the use of antitumor antibody x MHC/viral peptide conjugates.
Resumo:
Résumé Etant une importante source d'énergie, les plantes sont constamment attaquées par des pathogènes. Ne pouvant se mouvoir, elles ont développé des systèmes de défense sophistiqués afin de lutter contre ces prédateurs. Parmi ces systèmes, les voies de signalisation mettant en jeu des éliciteurs endog8nes tels que les jasmonates permettent d'induire la production de protéines de défense telles que les protéines dites "liées à la pathogénèse". Les gènes codant pour ces protéines appartiennent à des familles multigéniques. Le premier but de cette thèse est d'évaluer le nombre de ces gènes dans le génome d'Arabidopsis thaliana et d'estimer la part de ce système de défense, dépendant de la voie de signalisation des jasmonates. Nous avons défini un cluster de seulement 1S gènes sur 266, "liés à la pathogénèse", exclusivement régulés par les jasmonates. De multiples membres des familles des lectines de type jacaline et des inhibiteurs de trypsines semblent dépendre du jasmonate. Présente dans tous les systèmes immunitaires des eucaryotes, la famille des défensines est une famille très intéressante. Chez Arabidopsis thaliana, 317 protéines similaires aux défensines ont été définies, cependant seulement 15 défensines (PDF) sont bien annotées. Ces 15 défensines sont séparées en deux groupes dont un semble avoir évolué plus récemment. Le second but de cette thèse est d'étudier ce groupe de défensines à l'aide de la bioinformatique et des techniques de biologie moléculaire (gêne rapporteur, PCR en temps réel). Nous avons montré que ce groupe contenait une défensine acide intéressante, PDF1.5, qui semblait avoir subi une sélection positive. Cette protéine n'avait encore jamais été étudiée. Contrairement à ce que nous pensions, nous avons établi que cette protéine pouvait avoir une activité biologique liée à la défense. Ce travail de thèse a permis de préciser le nombre de gènes "liées à la pathogénèse" induits par la voie des jasmonates et d'apporter des éléments de réponse sur la question de la redondance des gènes de défense. En conclusion, même si de nombreuses familles de gènes intervenant dans la défense sont bien définies chez Arabidopsis, il reste encore de nombreuses études à faire sur chacun de ces membres. Abstract Being an important source of energy, plants are constantly attacked by herbivores and pathogens. As sessile organisms, they have developed sophisticated defense responses to cope with attack. Among these responses, signalling pathways, using endogenous elicitors including jasmonates (JA), allow the plant to induce the production of defense proteins such as pathogenesis-related (PR) proteins. The genes encoding these proteins belong to multigenic families. The first goal of this thesis was to evaluate the number of PR genes in the genome of Arabidopsis thaliana and estimate how much of this plant defense system was dependent on the jasmonate signaling pathway in leaves. Surprisingly a cluster of only 1S genes out of 2ó6 PR genes was exclusively regulated by JA. Multiple members of the jacalin lectin and trypsin inhibitor gene families were shown to be regulated by JA. Present in all eukaryotic immune systems, defensins are an attractive PR family to study. In Arabidopsis thaliana, 317 defensin-related proteins have been found but just 1S defensins (i.e. PDF family) are well annotated. These defensins are split into 2 groups. One of these groups may have appeared and diversified recently. The second goal of this thesis was to study this defensin gene group combining bioinformatic, reporter gene and quantitative PCR techniques. We have shown that this group contains an interesting acidic defensin, PDF1.S, which seems to have undergone positive selection. No information was known on this protein. We have established that this protein may have a biological activity in plant defense. This thesis allowed us to define the number of PR genes induced by the jasmonate pathway and gave initial leads to explain the redundancy of the PR genes in the genome of Arabidopsis. In conclusion, even if many defense gene families are already defined in the Arabidopsis genome, much work remains to be done on individual members.
Resumo:
BACKGROUND The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-gamma-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-gamma treatment in human melanoma cell lines. METHODS Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan(R) Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-gamma-treated cells. RESULTS Altered IFN-gamma mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-alpha led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-gamma treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-alpha treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-gamma in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-gamma signaling pathway. CONCLUSION We observed two distinct mechanisms of loss of IFN-gamma inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-gamma signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence of IFN-gamma-mediated HLA class I expression in ESTDAB-159 cells is due to epigenetic blocking of IFN-regulatory factor 1 (IRF-1) transactivation.
Resumo:
BACKGROUND The etiology of Ulcerative Colitis (UC) and Crohn's Disease (CD), considered together as Inflammatory Bowel Diseases (IBD), involves environmental and genetic factors. Although some genes are already known, the genetics underlying these diseases is complex and new candidates are continuously emerging. The CD209 gene is located in a region linked previously to IBD and a CD209 functional polymorphism (rs4804803) has been associated to other inflammatory conditions. Our aim was to study the potential involvement of this CD209 variant in IBD susceptibility. METHODS We performed a case-control study with 515 CD patients, 497 UC patients and 731 healthy controls, all of them white Spaniards. Samples were typed for the CD209 single nucleotide polymorphism (SNP) rs4804803 by TaqMan technology. Frequency comparisons were performed using chi2 tests. RESULTS No association between CD209 and UC or CD was observed initially. However, stratification of UC patients by HLA-DR3 status, a strong protective allele, showed that carriage of the CD209_G allele could increase susceptibility in the subgroup of HLA-DR3-positive individuals (p = 0.03 OR = 1.77 95% CI 1.04-3.02, vs. controls). CONCLUSION A functional variant in the CD209 gene, rs4804803, does not seem to be influencing Crohn's disease susceptibility. However, it could be involved in the etiology or pathology of Ulcerative Colitis in HLA-DR3-positive individuals but further studies are necessary.
Resumo:
Celiac disease (CD) is a common autoimmune disorder characterized by an immune response to ingested gluten and has a strong HLA association with HLA-DQ2 and HLA-DQ8 molecules, but human HLA-DQ risk factors do not explain the entire genetic susceptibility to gluten intolerance. CD is caused by the lack of immune tolerance (oral tolerance) to wheat gluten. In this sense, the expression of soluble HLA-G in CD is of special interest because the molecule plays an important role in the induction of immune tolerance. The enhanced expression of soluble HLA-G found in CD may be part of a mechanism to restore the gluten intolerance. In this editorial, we review recent progress in understanding CD in relation to its prevalence, diagnosis and possible mechanisms of pathogenesis.
Resumo:
Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectin-like receptor NKG2D. To redirect NK cells against tumor cells, we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the 'knob into hole' heterodimerization strategy, in which 'knob' and 'hole' variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site.
Resumo:
Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further.