528 resultados para Gravitation.
Resumo:
Die Invarianz physikalischer Gesetze unter Lorentztransformationen ist eines der fundamentalen Postulate der modernen Physik und alle Theorien der grundlegenden Wechselwirkungen sind in kovarianter Form formuliert. Obwohl die Spezielle Relativitätstheorie (SRT) in einer Vielzahl von Experimenten mit hoher Genauigkeit überprüft und bestätigt wurde, sind aufgrund der weitreichenden Bedeutung dieses Postulats weitere verbesserte Tests von grundsätzlichem Interesse. Darüber hinaus weisen moderne Ansätze zur Vereinheitlichung der Gravitation mit den anderen Wechselwirkungen auf eine mögliche Verletzung der Lorentzinvarianz hin. In diesem Zusammenhang spielen Ives-Stilwell Experimente zum Test der Zeitdilatation in der SRT eine bedeutende Rolle. Dabei wird die hochauflösende Laserspektroskopie eingesetzt, um die Gültigkeit der relativistischen Dopplerformel – und damit des Zeitdilatationsfaktors γ – an relativistischen Teilchenstrahlen zu untersuchen. Im Rahmen dieser Arbeit wurde ein Ives-Stilwell Experiment an 7Li+-Ionen, die bei einer Geschwindigkeit von 34 % der Lichtgeschwindigkeit im Experimentierspeicherring (ESR) des GSI Helmholtzzentrums für Schwerionenforschung gespeichert waren, durchgeführt. Unter Verwendung des 1s2s3S1→ 1s2p3P2-Übergangs wurde sowohl Λ-Spektroskopie als auch Sättigungsspektroskopie betrieben. Durch die computergestützte Analyse des Fluoreszenznachweises und unter Verwendung optimierter Kantenfilter für den Nachweis konnte das Signal zu Rauschverhältnis entscheidend verbessert und unter Einsatz eines zusätzlichen Pumplasers erstmals ein Sättigungssignal beobachtet werden. Die Frequenzstabilität der beiden verwendeten Lasersysteme wurde mit Hilfe eines Frequenzkamms spezifiziert, um eine möglichst hohe Genauigkeit zu erreichen. Die aus den Strahlzeiten gewonnen Daten wurden im Rahmen der Robertson-Mansouri-Sexl-Testtheorie (RMS) und der Standard Model Extension (SME) interpretiert und entsprechende Obergrenzen für die relevanten Testparameter der jeweiligen Theorie bestimmt. Die Obergrenze für den Testparameter α der RMS-Theorie konnte gegenüber den früheren Messungen bei 6,4 % der Lichtgeschwindigkeit am Testspeicherring (TSR) des Max-Planck-Instituts für Kernphysik in Heidelberg um einen Faktor 4 verbessert werden.
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.
Resumo:
BCJ-relations have a series of important consequences in Quantum FieldrnTheory and in Gravity. In QFT, one can use BCJ-relations to reduce thernnumber of independent colour-ordered partial amplitudes and to relate nonplanarrnand planar diagrams in loop calculations. In addition, one can usernBCJ-numerators to construct gravity scattering amplitudes through a squaringrn procedure. For these reasons, it is important to nd a prescription tornobtain BCJ-numerators without requiring a diagram by diagram approach.rnIn this thesis, after introducing some basic concepts needed for the discussion,rnI will examine the existing diagrammatic prescriptions to obtainrnBCJ-numerators. Subsequently, I will present an algorithm to construct anrneective Yang-Mills Lagrangian which automatically produces kinematic numeratorsrnsatisfying BCJ-relations. A discussion on the kinematic algebrarnfound through scattering equations will then be presented as a way to xrnnon-uniqueness problems in the algorithm.