943 resultados para Glycogen Synthase
Resumo:
The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the placental glycogen storage and fetal development in the pregnancy of neonatally streptozocin-induced diabetic rats and to establish relation with glycemia and insulin levels. Methods: At the birth day, 147 female rats were randomly distributed in two experimental groups: 1) Non-diabetic Group (Control, n=45) - received the vehicle; 2) Diabetic Group (STZ, n=102) received 100 mg streptozocin/kg in neonatal period. At day 0 of pregnancy, adult female rats were included in the control group when presented glycemia below 120 mg/dL and, in the group STZ with glycemia between 120 and 300 mg/dL. At day 21 of pregnancy, blood samples were collected for glycemia and insulin determination, and placentas withdrawn for placental glycogen determination. The newborns (NB) were classified in small (SGA), appropriate (AGA) and large (LGA) for gestational age. Results: Rats STZ presented higher glycemia at days 0 and 14 of pregnancy. At end of pregnancy, rats STZ showed higher proportion of NB SGA and LGA; reduced rate of NB AGA and unaltered glycemia, insulin and placental glycogen determinations. Conclusion: Mild diabetes altered the maternal glycemia in the early pregnancy, impairing future fetal development, but it caused no alteration on insulin and placental glycogen determination, confirming that this glycemic intensity was insufficient to change glycogen metabolism.
Resumo:
Purpose: To evaluate cigarette smoke exposure and/or diabetes association effects on the glycemia and liver glycogen levels of pregnant Wistar rats. Methods: 60 adult rats were randomly distributed into (n= 10/group): non-diabetic exposed to filtered air (G1); non-diabetic exposed to cigarette smoke only before pregnancy (G2); non-diabetic exposed to cigarette smoke before and during pregnancy (G3); diabetic exposed to filtered air (G4); diabetic exposed to cigarette smoke only before pregnancy (G5), and diabetic exposed to cigarette smoke before and during pregnancy (G6). Glycemia was determined at days 0 and 21 of pregnancy. Liver samples were collected for liver glycogen determinations. Results: At day 21 of pregnancy, glycemia was higher in G5 and G6 compared to G4 group. G2 (2.43 +/- 0.43), G3 (3.20 +/- 0.49), G4 (2.62 +/- 0.34), G5 (2.65 +/- 0.27) and G6 groups (1.94 +/- 0.35) presented decreased liver glycogen concentrations compared to G1 (4.20 +/- 0.18 mg/100mg liver tissue) (p<0.05). G5 and G6 groups presented decreased maternal weight gain and litter weight. Conclusions: Severe diabetes and cigarette smoke exposure, alone or associated, caused impairment in liver glycogen storage at term pregnancy. Due to the fact that liver glycogen storages were considered determinant for glucose tolerance, it is relevant to point out a rigid clinical glycemic control and to stop smoking so earlier in pregnancy programming.
Resumo:
The present study examines the effects of caloric restriction in cardiac tissue evaluation markers of oxidative stress. High-fat dietary restrictions can have a long-term impact on cardiac health. Dietary restriction of control diet increased myocardial superoxide dismutase (SOD) and catalase activities. Dietary restriction of fatty acid-enriched diets increased myocardial lipoperoxide concentrations, while SOD activity was decreased in cardiac tissue of rats with dietary restriction of fatty acid-enriched diets. Dietary restriction of unsaturated fatty acid-enriched diet induced the highest lipoperoxide concentration and the lowest myocardial SOD activity. Dietary restriction of unsaturated fatty acid decreased myocardial glycogen, and increased the lactate dehydrogenase/citrate synthase ratio. Dietary restriction of fatty acid-enriched diets were more deleterious to cardiac tissue than normal ad lib.-fed diet. In conclusion, the effects of caloric restriction on myocardial oxidative stress is dependent on which nutrient is restricted. Dietary restriction of fatty acid-enriched diets is deleterious relative to ad lib.-fed chow diet. (C) 2002 Elsevier, Science Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was undertaken to investigate, by immunohistochermistry, the expression of survivin and inducible nitric oxide synthase during 4NQO-induced rat tongue carcinogenesis. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution through their drinking water for 4, 12, and 20 weeks. Ten animals were used as negative control. Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure, survivin and iNOS were expresssed (P < 0.05) in some cells of the 'normal' oral epithelium. In pre-neoplastic lesions at 12 weeks following carcinogen exposure, the levels of survivin and iNOS were increased (p < 0.05) when compared to negative control, being the strongest effect observed to iNOS. In well-differentiated squamous cell carcinoma induced after 20 weeks of treatment with 4NQO, survivin and iNOS were expressed in some tumor cells. Lack of immunoreactivity for both markers was observed in the negative control group. Taken together, our results support the belief that expression of survivin and iNOS are early events during malignant transformation and conversion of the oral mucosa. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Diet compounds may influence obesity-related cardiac oxidative stress and metabolic sifting. Carbohydrate-rich diet may be disadvantageous from fat-rich diet to cardiac tissue and glycemic index rather than lipid profile may predict the obesity-related cardiac effects.Materials and methods: Male Wistar rats were divided into three groups (n=8/group): (C) receiving standard chow (3.0 kcal/g); (CRD) receiving carbohydrate-rich diet (4.0 kcal/g), and (FRD) receiving fat-rich diet (4.0 kcal/g). Rats were sacrificed after the oral glucose tolerance test (OGTT) at 60 days of dietary treatments. Lipid profile and oxidative stress parameters were determined in serum. Myocardial samples were used to determine oxidative stress, metabolic enzymes, glycogen and triacylglycerol.Results: FRD rats showed higher final body weight and body mass index than CRD and C. Serum cholesterol and low-density lipoprotein were higher in FRD than in CRD, while triacylglycerol and oxidized low-density lipoprotein cholesterol were higher in CRD than in FRD. CRD rats had the highest myocardial lipid hydroperoxide and diminished superoxide dismutase and catalase activities. Myocardial glycogen was lower and triacylglycerol was higher in CRD than in C and FRD rats. Although FRD rats had depressed myocardial-reducing power, no significant changes were observed in myocardial energy metabolism. Myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase, as well as the enhanced lactate debydrogenase/citrate synthase ratio indicated that fatty acid degradation was decreased in CRD rats. Glycemic index was positively correlated with obesity-related cardiac effects.Conclusions: Isoenergetic carbohydrate-rich and fat-rich diets induced different degree of obesity and differently affected lipid profile. Carbohydrate-rich diet was deleterious relative to fat-rich diet in the heart enhancing lipoperoxidation and shifting the metabolic pathway for energy production. Glycemic index rather than dyslipidemic profile may predict the obesity effects on cardiac tissue. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses, which include both cellular and Immoral components. Cellular responses are mediated by hemocytes, and Immoral responses include the activation of proteolytic cascades that initiate many events, including NO production. In mammals, nitric oxide synthases (NOSs) are also present in the endothelium, the brain, the adrenal glands, and the platelets. Studies on the distribution of NO-producing systems in invertebrates have revealed functional similarities between NOS in this group and vertebrates. We attempted to localize NOS activity in tissues of naive (UIL), yeast-injected (YIL), and saline-injected (SIL) larvae of the blowfly Chrysomya megacephala, using the NADPH diaphorase technique. Our findings revealed similar levels of NOS activity in muscle, fat body, Malpighian tubule, gut, and brain, suggesting that NO synthesis may not be involved in the immune response of these larval systems. These results were compared to many studies that recorded the involvement of NO in various physiological functions of insects.
Resumo:
The shikimate pathway is an attractive target for herbicides and antimicrobial agent development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the EPSP synthase was proposed to be present by sequence homology. Accordingly, in order to pave the way for structural and functional efforts towards anti-mycobacterial agent development, here we describe the molecular modeling of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase isolated from M. tuberculosis that should provide a structural framework on which the design of specific inhibitors may be based on. Significant differences in the relative orientation of the domains in the two models result in open and closed conformations. The possible relevance of this structural transition in the ligand biding is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The enzymes of the shikimate pathway are potential targets for the development of new therapies because they are essential for bacteria but absent from mammals. The last step in this pathway is performed by chorismate synthase (CS), which catalyzes the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. Optimization of crystallization trials allowed the crystallization of homogeneous recombinant CS from Mycobacterium tuberculosis (MtCS). The crystals of MtCS belong to space group P6(4)22 (or P6(2)22) and diffract to 2.8 Angstrom resolution, with unit-cell parameters a = b = 129.7, c = 156.8 Angstrom. There are two molecules in the asymmetric unit. Molecular-replacement trials were not sucessful. Heavy-atom derivative screening is in progress.