879 resultados para Glutathione Synthetase
Resumo:
The effects of aluminum (Al) on the activities of antioxidant enzymes and ferritin expression were studied in cell suspension cultures of two varieties of Coffea arabica, Mundo Novo and Icatu, in medium with pH at 5.8. The cells were incubated with 300 µM Al3+, and the Al speciation as Al3+ was 1.45% of the mole fraction. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were increased in Mundo Novo, whereas glutathione reductase (GR) and guaiacol peroxidase (GPOX) activities remained unchanged. SOD, GR, and GST activities were increased in Icatu, while CAT activity was not changed, and GPOX activity decreased. The expression of two ferritin genes (CaFer1 and CaFer2) were analyzed by Real-Time PCR. Al caused a downregulation of CaFER1 expression and no changes of CaFER2 expression in both varieties. The Western blot showed no alteration in ferritin protein levels in Mundo Novo and a decrease in Icatu. The differential enzymes responses indicate that the response to Al is variety-dependent.
Resumo:
O objetivo foi investigar a interação entre fatores dietéticos e polimorfismos de enzimas de metabolização de xenobióticos (GSTM1 e GSTT1) associadas ao câncer de cabeça e pescoço em um estudo caso controle de base hospitalar, no Município de São Paulo, Brasil. Participaram 103 casos incidentes, histologicamente confirmados, e 101 controles. O consumo alimentar foi obtido por um questionário de frequência alimentar validado. Os polimorfismos GSTM1 e GSTT1 foram avaliados pelo método PCR. Observou-se aumento de risco no mais alto tercil de consumo de carne bovina na presença do alelo nulo da GSTM1 (OR = 10,79; IC95%: 2,17-53,64) e GSTT1 (OR = 3,41; IC95%: 0,43-27,21). Considerando-se a razão entre alimentos de origem animal e vegetal, verificou-se para o tercil intermediário a OR = 2,02 (IC95%: 0,24-16,0) e no tercil superior OR = 3,23 (IC95%: 0,40-25,92). Os resultados apontam para uma possível interação entre o consumo de carne e variantes polimórficas dos genes GSTM1 e GSTT1 na modulação do risco para o câncer de cabeça e pescoço, influenciados pelo consumo de alimentos de origem vegetal.
Resumo:
Para avaliar a influência da suplementação com selênio e vitamina E sobre o perfil proteico e metabolismo oxidativo de cordeiros infectados experimentalmente pelo Haemonchus contortus, trinta cordeiros fêmeas foram distribuídos em quatro grupos: G1 (n=10): animais infectados; G2 (n=10): infectados e suplementados; G3 (n=5): controle; e G4 (n=5): não infectados e suplementados. Os grupos 1 e 2 receberam 500 larvas de H. contortus (L3), via oral, por um período de 20 dias, com intervalo de dois dias entre as doses. A suplementação nos grupos 2 e 4 foi realizada no dia zero, com 0,1mg kg-1 de Selenito de sódio (1,67%) e com 2.000UI de vitamina E por via intramuscular (IM). Somente a vitamina E foi reaplicada no dia 30. As coletas de sangue para determinação do perfil proteico (proteína total, albumina, alfa, beta e gamaglobulina) e metabolismo oxidativo (espécies reativas ao ácido tiobarbitúrico-TBARS e a enzima glutationa peroxidase (GSPX) foram realizadas nos dias zero, 20, 30, 45, 60 e 80. OPG foi quantificado nos dias 0, 20 ,45 e 80. Em relação aos valores de proteínas totais, albumina, betaglobulina e gamaglobulina, as principais diferenças foram observadas quando os grupos parasitados foram comparados com o grupo somente suplementado; e este manteve valores mais elevados. Conclui-se que não há influência da suplementação com selênio e vitamina E no perfil proteico e metabolismo oxidativo quando os cordeiros se encontram severamente parasitados por H.contortus.
Resumo:
Evidências têm demonstrado que distúrbios do metabolismo são comuns em células tumorais, levando ao aumento do estresse oxidativo. A elevação na produção de espécies reativas de oxigênio (EROs) associada à baixa atividade antioxidante tem sido relacionada a vários tipos de câncer. O selênio, micronutriente antioxidante, pode funcionar como um agente antimutagênico, prevenindo transformações malignas de células normais. Realizou-se um levantamento bibliográfico no período 2000 a 2009 mediante consulta à base de dados PubMed (National Library of Medicine´s Medline Biomedical Literature, USA), selecionando-se 39 artigos que avaliaram a relação entre câncer, estresse oxidativo e suplementação com selênio. O efeito protetor desse mineral é especialmente associado à sua presença na glutationa peroxidase e na tioredoxina redutase, enzimas protetoras do DNA e outros componentes celulares contra o dano oxidativo causado pelas EROs. Vários estudos têm demonstrado a expressão reduzida destas enzimas em diversos tipos de câncer, principalmente quando associados a uma baixa ingestão de selênio, que pode acentuar os danos causados. A suplementação de selênio parece ocasionar redução do risco de alguns tipos de câncer diminuindo o estresse oxidativo e o dano ao DNA. No entanto, mais estudos são necessários para esclarecer as doses de selênio adequadas para cada situação (sexo, localização geográfica e tipo de câncer)
Resumo:
Background: Protein-protein interactions (PPIs) constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description: All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C(3)) which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW) calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS) (AT5G26710) we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630), a disease resistance protein (AT3G50950) and a zinc finger protein (AT5G24930), which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions: AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.
Resumo:
Baccharis dracunculifolia DC (Asteraceae) is a Brazilian medicinal plant popularly used for its antiulcer and anti-inflammatory properties. This plant is the main botanical source of Brazilian green propolis, a natural product incorporated into food and beverages to improve health. The present study aimed to investigate the chemical profile and intestinal anti-inflammatory activity of B. dracunculifolia extract on experimental ulcerative colitis induced by trinitrobenzenosulfonic acid (TNBS). Colonic damage was evaluated macroscopically and biochemically through its evaluation of glutathione content and its myeloperoxidase (MPO) and alkaline phosphatase activities. Additional in vitro experiments were performed in order to test the antioxidant activity by inhibition of induced lipid peroxidation in the rat brain membrane. Phytochemical analysis was performed by HPLC using authentic standards. The administration of plant extract (5 and 50 mgkg(-1)) significantly attenuated the colonic damage induced by TNBS as evidenced both macroscopically and biochemically. This beneficial effect can be associated with an improvement in the colonic oxidative status, since plant extract prevented glutathione depletion, inhibited lipid peroxidation and reduced MPO activity. Caffeic acid, p-coumaric acid, aromadendrin-4-O-methyl ether, 3-prenyl-p-coumaric acid, 3,5-diprenyl-p-coumaric acid and baccharin were detected in the plant extract.
Resumo:
BACKGROUND: Age-related cataracts (ARCs) are an important cause of blindness in developing countries. Although antioxidants may be part of the body's defense to prevent ARC, environmental contaminants may contribute to cataractogenesis. In fish-eating populations of the lower Tapajos region, elevated exposure to mercury (Hg) has been reported, and blood levels of selenium (Se) range from normal to very high (> 1,000 mu g/L). OBJECTIVES: We examined ARCs in relation to these elements among adults (>= 40 years of age) from 12 riverside communities. METHODS: Participants (n = 211) provided blood samples and underwent an extensive ocular examination. Inductively coupled plasma mass spectrometry was used to assess Hg and Se in blood and plasma. RESULTS: One-third (n = 69; 32.7%) of the participants had ARC. Lower plasma Se (P-Se; < 25th percentile, 110 mu g/L) and higher blood Hg (B-Hg; >= 25th percentile, 25 mu g/L) were associated with a higher prevalence odds ratio (POR) of ARC [adjusted POR (95% confidence interval), 2.69 (1.11-6.56) and 4.45 (1.43-13.83), respectively]. Among participants with high P-Se, we observed a positive but nonsignificant association with high B-Hg exposure, whereas among those with low B-Hg, we observed no association for P-Se. However, compared with the optimum situation (high P-Se, low B-Hg), the POR for those with low P-Se and high B-Hg was 16.4 (3.0-87.9). This finding suggests a synergistic effect. CONCLUSION: Our results suggest that persons in this population with elevated Hg, the cataractogenic effects of Hg may be offset by Se. Because of the relatively small sample size and possible confounding by other dietary nutrients, additional studies with sufficient power to assess multiple nutrient and toxic interactions are required to confirm these findings.
Resumo:
Background: Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results: In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a sigma(54)-dependent manner. A more complete picture of the sigma(54) regulon was achieved by combining the transcriptome data with an in silico search for potential sigma(54)-dependent promoters, using a position weight matrix approach. One of these sigma(54)-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a sigma(54)-dependent promoter. Conclusions: Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the sigma(54) regulon.
Resumo:
Glutathione S-transferases (GSTs) constitute a superfamily of ubiquitous multifunctional enzymes that are involved in the cellular detoxification of a large number of endogenous and exogenous chemical agents that have electrophilic functional groups. People who have deficiencies in this family of genes are at increased risk of developing some types of tumors. We examined GSTP1 Ile105Val polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the Val allele of the GSTP1 Ile105Val polymorphism had an increased risk of tumor development (odds ratio = 8.60; 95% confidence interval = 4.74-17.87; P < 0.001). Overall survival of patients did not differ significantly. We suggest that GSTP1 Ile105Val polymorphisms are involved in susceptibility to developing astrocytomas and glioblastomas.
Resumo:
Background: The New World screw-worm (NWS), Cochliomyia hominivorax, is one of the most important myiasis-causing flies, causing severe losses to the livestock industry. In its current geographical distribution, this species has been controlled by the application of insecticides, mainly organophosphate (OP) compounds, but a number of lineages have been identified that are resistant to such chemicals. Despite its economic importance, only limited genetic information is available for the NWS. Here, as a part of an effort to characterize the C. hominivorax genome and identify putative genes involved in insecticide resistance, we sampled its transcriptome by deep sequencing of polyadenylated transcripts using the 454 sequencing technology. Results: Deep sequencing on the 454 platform of three normalized libraries (larval, adult male and adult female) generated a total of 548,940 reads. Eighteen candidate genes coding for three metabolic detoxification enzyme families, cytochrome P450 monooxygenases, glutathione S transferases and carboxyl/cholinesterases were selected and gene expression levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Of the investigated candidates, only one gene was expressed differently between control and resistant larvae with, at least, a 10-fold down-regulation in the resistant larvae. The presence of mutations in the acetylcholinesterase (target site) and carboxylesterase E3 genes was investigated and all of the resistant flies presented E3 mutations previously associated with insecticide resistance. Conclusions: Here, we provided the largest database of NWS expressed sequence tags that is an important resource, not only for further studies on the molecular basis of the OP resistance in NWS fly, but also for functional and comparative studies among Calliphoridae flies. Among our candidates, only one gene was found differentially expressed in resistant individuals, and its role on insecticide resistance should be further investigated. Furthermore, the absence of mutations in the OP target site and the high frequency of mutant carboxylesterase E3 indicate that metabolic resistance mechanisms have evolved predominantly in this species.
Resumo:
Background: Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. Methods: Glutathione S-transferase (GST) and GST-fusion proteins representing the N-terminus of the merozoite surface protein 1 of P. vivax, PvMSP1-N, and the C-terminus, PvMSP1-C, were covalently coupled to BioPlex carboxylated beads. Recombinant proteins and coupled beads were used, respectively, in ELISA and Bioplex assays using immune sera of P. vivax patients from Brazil and PNG to determine IgG and subclass responses. Concordances between the two methods in the seropositivity responses were evaluated using the Kappa statistic and the Spearman's rank correlation. Results: The results using this methodology were compared with the classical microtitre enzyme-linked immnosorbent assay ( ELISA), showing that the assay was sensitive, reproducible and had good concordance with ELISA; yet, further research into different statistical analyses seems desirable before claiming conclusive results exclusively based on multiplex assays. As expected, results demonstrated that PvMSP1 was immunogenic in natural infections of patients from different endemic regions of Brazil and Papua New Guinea ( PNG), and that age correlated only with antibodies against the C-terminus part of the molecule. Furthermore, the IgG subclass profiles were different in these endemic regions having IgG3 predominantly recognizing PvMSP1 in Brazil and IgG1 predominantly recognizing PvMSP1 in PNG. Conclusions: This study validates the use of the multiplex assay to measure naturally-acquired IgG antibodies against the merozoite surface protein 1 of P. vivax.
Resumo:
The aim of this study was to evaluate the effect of oat bran supplementation on time to exhaustion, glycogen stores and cytokines in rats submitted to training. The animals were divided into 3 groups: sedentary control group (C), an exercise group that received a control chow (EX) and an exercise group that received a chow supplemented with oat bran (EX-O). Exercised groups were submitted to an eight weeks swimming training protocol. In the last training session, the animals performed exercise to exhaustion, (e.g. incapable to continue the exercise). After the euthanasia of the animals, blood, muscle and hepatic tissue were collected. Plasma cytokines and corticosterone were evaluated. Glycogen concentrations was measured in the soleus and gastrocnemius muscles, and liver. Glycogen synthetase-alpha gene expression was evaluated in the soleus muscle. Statistical analysis was performed using a factorial ANOVA. Time to exhaustion of the EX-O group was 20% higher (515 +/- 3 minutes) when compared with EX group (425 +/- 3 minutes) (p = 0.034). For hepatic glycogen, the EX-O group had a 67% higher concentrations when compared with EX (p = 0.022). In the soleus muscle, EX-O group presented a 59.4% higher glycogen concentrations when compared with EX group (p = 0.021). TNF-alpha was decreased, IL-6, IL-10 and corticosterone increased after exercise, and EX-O presented lower levels of IL-6, IL-10 and corticosterone levels in comparison with EX group. It was concluded that the chow rich in oat bran increase muscle and hepatic glycogen concentrations. The higher glycogen storage may improve endurance performance during training and competitions, and a lower post-exercise inflammatory response can accelerate recovery.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases (PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and concentration-dependent fashion, most likely through covalent modification of the active site sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class of mechanism-based probes to modulate the PTP-mediated cellular processes.
Resumo:
The uptake of ascorbate by neuroblastoma cells using a ruthenium oxide hexacyanoferrate (RuOHCF)-modified carbon fiber disc (CFD) microelectrode (r = 14.5 mu m) was investigated. By use of the proposed electrochemical sensor the amperometric determination of ascorbate was performed at 0.0 V in minimum essential medium (MEM, pH = 7.2) with a limit of detection of 25 mu mol L(-1). Under the optimum experimental conditions, no interference from MEM constituents and reduced glutathione (used to prevent the oxidation of ascorbate during the experiments) was noticed. The stability of the RuOHCF-modified electrode response was studied by measuring the sensitivity over an extended period of time (120 h), a decrease of around 10% being noticed at the end of the experiment. The rate of ascorbate uptake by control human neuroblastoma SH-SY5Y cells, and cells transfected with wild-type Cu,Zn-superoxide dismutase (SOD WT) or with a mutant typical of familial amyotrophic lateral sclerosis (SOD G93A), was in agreement with the level of oxidative stress in these cells. The usefulness of the RuOHCF-modified microelectrode for in vivo monitoring of ascorbate inside neuroblastoma cells was also demonstrated.