929 resultados para Glass transition temperature Tg
Resumo:
Films of high glass' transition temperature polymer polyetherketone doped with chromophore 2,2'[4-[(5-nitro-2-thiazolyl)azophenyl]-amino]-bisethanol NTAB) were prepared, poled by the corona-onset poling setup which includes a grid voltage making the surface-charge distribution uniform at elevated temperature. The thickness of the films was measured by the Model 2010 Prism Coupler system. Second harmonic generation d(33) was measured by the second harmonic generation method, and the d33 is 38.12 pm/V at 1064 nm under the absorption correction. The nonlinear optical activity maintains is 80% of its initial value. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We have prepared the polymer thin films of a 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DChTP)/poly (methyl methacrylate) (PMMA) guest-host system by spin coating. In order to investigate their temporal and temperature stability, we have measured their dielectric relaxation spectra including the frequency dependence of the real and imaginary parts of dielectric constants. The investigated frequency ranged from 50 Hz to 10 MHz. The measured temperature range above the glass transition temperature T-g (95 degrees C) of the DCNP/PMMA system was from 95 degrees C to 1250C. By using the Adam-Gibbs model, the temperature dependence of the characteristic time tau above T-g was fitted, and the values of the characteristic times tau below T-g were estimated. The lifetimes of the polymer were evaluated by the Kohlrausch-Williams Watts (KWW) empirical decay model. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The high glass transition temperature polymer polyetherketone doped with disperse red 13 (DR13/PEK-c) has been prepared by the spin-coating method. Through in situ second-harmonic generation, the corona poling temperature was optimized by measuring the temperature dependence of the in situ second-harmonic generation signal intensity under the poling electric field. The linear electro-optic coefficients of the poled polymer films have been determined at 632.8 nm by using a simple interferometric technique. The polymer system was measured after 13 000 h, and found that it remained at 80% of its initial value.
Resumo:
A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.
Resumo:
The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.
Resumo:
The mechanism of inhibition of polymer film dewetting is investigated by adding a star comb-like polymer, four-arm P(S-ran-VB-g-PMMA), to PS film and PMMA film on different substrates. It is found that the mechanism of inhibition of polymer film dewetting is kinetic in nature, and is related to the miscibility between the additional compound and the polymer film. On addition to the miscible system [four-arm P(S-ran-VB-g-PMMA) and PMMA], the star comb-like polymers can increase the resistant force of dewetting with hole growth and inhibit the dewetting process of the thin polymer film by enrichment in the rim.
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
Poly(L-lactide) (PLA)/silica (SiO2) nanocomposites containing 1, 3, 5, 7, and 10 Wt % SiO2 nanoparticles were prepared by melt compounding in a Haake mixer. The phase morphology, thermomechanical properties, and optical transparency were investigated and compared to those of neat PLA. Scanning electron microscopy results show that the SiO2 nanoparticles were uniformly distributed in the PLA matrix for filler contents below 5 wt %, whereas some aggregates were detected with further increasing filler concentration. Differential scanning calorimetry analysis revealed that the addition Of SiO2 nanoparticles not only remarkably accelerated the crystallization speed but also largely improved the crystallinity of PLA. An initial increase followed by a decrease with higher filler loadings for the storage modulus and glass-transition temperature were observed according to dynamic mechanical analysis results. Hydrogen bonding interaction involving C=O of PLA with Si-OH Of SiO2 was evidenced by Fourier transform infrared analysis for the first time.
Resumo:
BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.
Resumo:
The wettability of thin poly(methyl methacrylate) (PMMA) films on a silicon wafer with a native oxide layer exposed to solvent vapors is dependent on the solvent properties. In the nonsolvent vapor, the film spread on the substrate with some protrusions generated on the film surface. In the good solvent vapor, dewetting happened. A new interface formed between the anchored PMMA chains and the swollen upper part of the film. Entropy effects caused the upper movable chains to dewet on the anchored chains. The rim instability depended on the surface tension of solvent (i.e., the finger was generated in acetone vapor (gamma(acetone) = 24 mN/m), not in dioxane vapor (gamma(dioxane) = 33 mN/m)). The spacing (lambda) that grew as an exponential function of film thickness h scaled as similar to h(1.31) whereas the mean size (D) of the resulting droplets grew linearly with h.
Resumo:
The thin films of a symmetric crystalline-coil diblock copolymer of poly(L-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (T-g(PLLA)), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (T-c), the glass transition temperature of PS (T-g(PS)), the peak melting point of PLLA crystals (T-m(PLLA)), and the end melting point of PLLA crystals (T-m,end(PLLA)). When annealed at (T-c =) 80 degrees C (T-c < T-g(PS) < T-ODT, order-disorder transition temperature), 123 degrees C (T-g(PS) < T-c < T-m(PLLA) < T-ODT). 165 degrees C (T-g(PS) < T-m(PLLA) < T-c < T-m,end(PLLA) < T-ODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced.
Resumo:
novel compound (BCBP) based on the modification of a well-known host material 4,4'-(bis(9-carbazolyl))biphenyl (CBP) through arylmethylene bridge linkage was synthesized, and fully characterized. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied. A high glass transition temperature (T-g) of 173 degrees C is observed for BCBP due to the introduction of the bridged structure, remarkably contrasting with a low T-g of 62 degrees C for CBP. Furthermore, the bridged structure enhances the conjugation and raises the HOMO energy, thus facilitating hole-injection and leading to a low turn-on voltage in an electroluminescent device. With the device structure of ITO/MoO3/NPB/Ir complex: BCBP/BCP/Alq(3)/LiF/Al, maximum power efficiencies of 41.3 lm/W and 6.3 lm/W for green- and blue-emitting OLED were achieved, respectively.
Resumo:
A functionalized. cyclic carbonate monomer containing a cinnamate moiety, 5-methyl-5-cinnamoyloxymethyl-1,3-dioxan-2-one (MC), was prepared for the first time with 1,1,1-tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L-lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester-carbonate). The results indicated that the copolymers displayed a single glass transition temperature (T-g) and the T, decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo-crosslinking of the cinnamate-carrying copolymer was also demonstrated.
Resumo:
A novel aliphatic polycarbonate from renewable resource was prepared by copolymerization of furfuryl glycidyl ether and CO2 using rare earth ternary catalyst; its number-average molecular weight (M-n) reached 13.3 x 10(4) g/mol. The furfuryl glycidyl ether and CO2 copolymer (PFGEC) was easy to become yellowish at ambient atmosphere due to post polymerization cross-linking reaction oil the furan ring; the gel content was 17.2 wt % after 24 h exposure to air at room temperature. PFGEC could be stabilized by addition of antioxidant 1010 (tetrakis[methylene (3.5-di(tert-butyl)-4-hydroxhydrocinnamate)]methane) in 0.5-3 wt % after copolymerization. The Diels-Alder (DA) reaction between N-phenylmaleimide and the pendant furan ring was also effective for the stabilization of PFGEC by reducing the amount of furan ring and introducing bulky groups into PFGEC. The cyclization degree could reach 72.1% when the molar ratio of N-phenylmaleimide to furan ring was 3: 1, and no gel was observed after 24 h exposure to air. The glass transition temperature (T-g) of PFGEC was 6.8 degrees C, and it increased to 40.3 degrees C after DA reaction (molar ratio of N-phenylmaleimide to furan ring was 3: 1).
Resumo:
We have synthesized macrocyclic polystyrene- (PS-) terminated PS star polymers via a core-cross-linking approach in this work. A tadpole-shaped macrocyclic PS-linear-PS copolymer was synthesized at first via click chemistry and ATRP polymerization method. The "living" ATRP initiating chain-ends of the tadpole-shaped copolymers were linked together via ATRP polymerization with divinylbenzene to form a core-cross-linked macrocyclic star polymer. The number of arms attached to the macrocyclic star polymers was measured with NMR. and absolute molecular weights with gel permeation chromatography (GPC) with multiangle laser light scattering detector. These macrocyclic star polymers had a highly cross-linked core and many radiating arms. The shorter tadpole-shaped precursors caused core-cross-linked star polymers with higher molecular weights and more arm numbers. The macrocycle-terminated core-cross-linked star polymers showed two glass transition temperatures, one arising from the linear branches and another from the macrocycles.