904 resultados para General Motors Corporation. Pontiac Motor Division
Resumo:
Modelling the power systems load is a challenge since the load level and composition varies with time. An accurate load model is important because there is a substantial component of load dynamics in the frequency range relevant to system stability. The composition of loads need to be charaterised because the time constants of composite loads affect the damping contributions of the loads to power system oscillations, and their effects vary with the time of the day, depending on the mix of motors loads. This chapter has two main objectives: 1) describe the load modelling in small signal using on-line measurements; and 2) present a new approach to develop models that reflect the load response to large disturbances. Small signal load characterisation based on on-line measurements allows predicting the composition of load with improved accuracy compared with post-mortem or classical load models. Rather than a generic dynamic model for small signal modelling of the load, an explicit induction motor is used so the performance for larger disturbances can be more reliably inferred. The relation between power and frequency/voltage can be explicitly formulated and the contribution of induction motors extracted. One of the main features of this work is the induction motor component can be associated to nominal powers or equivalent motors
Resumo:
Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
Permanent magnet (PM) motors utilising ironless stator structures have been incorporated into a wide variety of applications where high efficiency and stringent torque control are required. With recent developments in magnetic materials, improved design strategies, and power outputs of up to 40kW, PM motors have become an attractive candidate for traction drives in electric and hybrid electric vehicles. However, due to their large air gaps and ironless stators these motors can have inductances as low as 2μH, imposing increased requirements on the converter to minimise current ripple. Multilevel converters with n cells can effectively increase the motor inductance by a factor of n2 and are an excellent approach to minimise the motor ripple current. Furthermore by indirectly coupling the outputs of each cell, improvements in converter input and cell ripple current can also be realised. This paper examines the issues in designing a high current indirectly coupled multilevel motor controller for an ironless BLDC traction drive and highlights the limitations of the common ladder core structure.
Resumo:
An ironless motor for use as direct wheel drive is presented. The motor is intended for use in a lightweight (600kg), low drag, series hybrid commuter vehicle under development at The University of Queensland. The vehicle will utilise these ironless motors in each of its rear wheels, with each motor producing a peak torque output of 500Nm and a maximum rotational speed of 1500rpm. The axial flux motor consists of twin Ironless litz wire stators with a central magnetic ring and simplified Halbach magnet arrays on either side. A small amount of iron is used to support the outer Halbach arrays and to improve the peak magnetic flux density. Ducted air cooling is used to remove heat from the motor and will allow for a continuous torque rating of 250Nm. Ironless machines have previously been shown to be effective in high speed, high frequency applications (+1000Hz). They are generally regarded as non-optimal for low speed applications as iron cores allow for better magnet utilisation and do not significantly increase the weight of a machine. However, ironless machines can also be seen to be effective in applications where the average torque requirement is much lower than the peak torque requirement such as in some vehicle drive applications. The low spinning losses in ironless machines are shown to result in very high energy throughput efficiency in a wide range of vehicle driving cycles.
Resumo:
This paper considers the design of a radial flux permanent magnet iron less core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the air-gap flux density. The motor design is based around commonly available NdFeB bar magnet size
Resumo:
This paper considers the design of a radial flux permanent magnet ironless core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the airgap flux density. The motor design is based around commonly available NdFeB bar magnet size
Resumo:
Bicyclists are among the most vulnerable of road users, with high fatal crash rates. Although visibility aids have been widely advocated to help prevent bicycle-vehicle conflicts, to date no study has investigated, among crash-involved cyclists, the kind of visibility aids they were using at the time of the crash. This study undertook a detailed investigation of visibility factors involved in bicyclist-motor-vehicle crashes. We surveyed 184 bicyclists (predominantly from Australia via internet cycling forums) who had been involved in motor vehicle collisions regarding the perceived cause of the collision, ambient weather and general visibility, as well as the clothing and bicycle lights used by the bicyclist. Over a third of the crashes occurred in low light levels (dawn, dusk or night-time), which is disproportionate given that only a small proportion of bicyclists typically ride at these times. Importantly, 19% of these bicyclists reported not using bicycle lights at the time of the crash, and only 34% were wearing reflective clothing. Only two participants (of 184) nominated bicyclist visibility as the cause of the crash: 61% attributed the crash to driver inattention. These findings demonstrate that crash-involved bicyclists tend to under-rate and under-utilise visibility aids as a means of improving their safety.
Resumo:
Aim Explore practice nurses' (PNs) role in child health and development, and advising parents about child health issues. Background Introduction of the four-year-old child health check into general practice in 2008 placed additional responsibilities on PNs in child health and wellness. This study explores their readiness to expand their practice into this area. Design Integrated mixed method design, self-report survey. Method A purpose-developed questionnaire explored demographics, child health roles and responsibilities, difficulties encountered, professional development needs, barriers and facilitators, and professional development activities undertaken in the past year. Surveys were posted to 218 PNs in one rural Division of General Practice (DGP) in Queensland, Australia; 29 responded. Results PNs reported a significant role in well and sick child care (93.1%) though few had a paediatric/child health background (14.3%). Roles included immunisations (92.3%), child health checks (65.4%), general child health and development (26.9%), asthma (23.1%), feeding (15.4%), fever (11.5%), settling/sleeping (11.5%). PNs were interested in learning more about (81.5%) and incorporating more child health into their practice (81.5%). Professional development in childhood growth and development (80.0%), health and illness (60.0%) and advising new mothers (20.0%) was needed. Conclusions PNs play a substantial role in child health, are unprepared for the complexities of this role and have preferred methods for undertaking professional development to address knowledge deficits. Implications for practice PNs are unprepared for an advanced role in child health and wellness. Significant gaps in their knowledge to support this role were identified. This ever-expanding role requires close monitoring to ensure knowledge precedes expectations to practice.
Resumo:
Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.
Resumo:
The specific aspects of cognition contributing to balance and gait have not been clarified in people with Parkinson’s disease (PD). Twenty PD participants and twenty age- and gender-matched healthy controls were assessed on cognition and clinical mobility tests. General cognition was assessed with the Mini Mental State Exam and the Addenbrooke’s Cognitive Exam. Executive function was evaluated using the Trail Making Tests (TMT-A and TMT-B) and a computerized cognitive battery which included a series of choice reaction time (CRT) tests. Clinical gait and balance measures included the Tinetti, Timed Up & Go, Berg Balance and Functional Reach tests. PD participants performed significantly worse than the controls on the tests of cognitive and executive function, balance and gait. PD participants took longer on Trail Making Tests, CRT-Location and CRT-Colour (inhibition response). Furthermore, executive function, particularly longer times on CRT-Distracter and greater errors on the TMT-B were associated with worse balance and gait performance in the PD group. Measures of general cognition were not associated with balance and gait measures in either group. For PD participants, attention and executive function were impaired. Components of executive function, particularly those involving inhibition response and distracters, were associated with poorer balance and gait performance in PD.
Resumo:
The reliable response to weak biological signals requires that they be amplified with fidelity. In E. coli, the flagellar motors that control swimming can switch direction in response to very small changes in the concentration of the signaling protein CheY-P, but how this works is not well understood. A recently proposed allosteric model based on cooperative conformational spread in a ring of identical protomers seems promising as it is able to qualitatively reproduce switching, locked state behavior and Hill coefficient values measured for the rotary motor. In this paper we undertook a comprehensive simulation study to analyze the behavior of this model in detail and made predictions on three experimentally observable quantities: switch time distribution, locked state interval distribution, Hill coefficient of the switch response. We parameterized the model using experimental measurements, finding excellent agreement with published data on motor behavior. Analysis of the simulated switching dynamics revealed a mechanism for chemotactic ultrasensitivity, in which cooperativity is indispensable for realizing both coherent switching and effective amplification. These results showed how cells can combine elements of analog and digital control to produce switches that are simultaneously sensitive and reliable. © 2012 Ma et al.
Resumo:
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices. © 2009 The Royal Society of Chemistry.
Resumo:
The New South Wales Attorney-General and Justice Policy Division released a Discussion Paper about reform of the Limitation of Actions Act 1969. The key question was whether and how to amend the statute to better provide access to justice for civil claimants in child abuse cases. This submission draws on published literature and multidisciplinary research to support the Discussion Paper's Option A, namely, to abolish the time limit for civil claims for injuries in criminal child abuse cases, and for this to be made retrospective.
Resumo:
Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.