944 resultados para Gene do receptor beta-adrenégico 1
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background/Aims: Prolactin (PRL) secretion and its gene expression are inhibited by dopamine. Prolactinomas are the most common secreting pituitary adenomas, and dopamine agonists (DA) are the first choice for their treatment. However, a subset of patients is resistant to DA. As the mechanisms involved in DA resistance are not fully understood, the aim of this study was to obtain new insights regarding the molecular differences between the prolactinomas that are responsive to DA and those that are resistant. Methods: Tumor tissue samples were collected from 17 patients who harbored prolactinomas, which were classified as responsive or resistant according to their clinical and laboratorial reaction to DA. The expression of 6 genes was evaluated by real-time polymerase chain reaction: dopamine receptor type 2 (DRD 2), nerve growth factor-beta (NGFB) and its receptor (NGFR), estrogen receptor-alpha (ERA), estrogen receptor-beta (ERB) and the pituitary tumor transforming gene (PTTG). Results: Median DRD 2 and NGFR expression in responsive patients was significantly higher than in resistant ones (p = 0.029 and p = 0.020, respectively). Moreover, the expressions of DRD 2 and NGFR were positively correlated with PRL decrease during treatment (r = 0.66, p = 0.005 and r = 0.57, p = 0.044, respectively). Furthermore, ERB expression was positively correlated to PTTG expression (r = 0.68, p = 0.032) and negatively correlated to NGFB expression (r = -0.75, p = 0.02). Conclusions: DRD2 and NGFR expressions are related to the responsiveness of prolactinoma to DA. However, PTTG, ERB and ERA expressions are not. Also ERB, ERA and PTTG expressions did not present a clear correlation to tumor aggressiveness. Furthermore, the response of prolactinomas to DA should be viewed as a spectrum ranging from the most responsive to the most resistant ones. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)
Resumo:
Objective: To investigate the role of regulatory T cells in the modulation of long-term immune dysfunction during experimental sepsis. It is well established that sepsis predisposes to development of a pronounced immunosuppression. Nevertheless, the mechanisms underlying the immune dysfunction after sepsis are still not well understood. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Wild-type mice underwent cecal ligation and puncture and were treated with antibiotic during 3 days after surgery. On days 1, 7, or 15 after cecal ligation and puncture, the frequency of regulatory T cells, proliferation of CD4(+) T cells and bacterial counts were evaluated. Fifteen days after cecal ligation and puncture, surviving mice underwent secondary pulmonary infection by intranasal inoculation of nonlethal dose of Legionella pneumophila. Some mice received agonistic glucocorticoid-induced tumor necrosis factor receptor antibody (DTA-1) before induction of secondary infection. Measurements and Main Results: Mice surviving cecal ligation and puncture showed a markedly increased frequency of regulatory T cells in thymus and spleen, which was associated with reduced proliferation of CD4(+) T cells. Fifteen days after cecal ligation and puncture, all sepsis-surviving mice succumbed to nonlethal injection of L. pneumophila. Treatment of mice with DTA-1 antibody reduced frequency of regulatory T cells, restored CD4(+) T cell proliferation, reduced the levels of bacteria in spleen, and markedly improved survival of L. pneumophila infection. Conclusion: These findings suggest that regulatory T cells play an important role in the progression and establishment of immune dysfunction observed in experimental sepsis. (Crit Care Med 2010; 38: 1718-1725)
Resumo:
Rhinosinusal polyps physiopathology is not fully understand, despite numerous hypotheses regarding its inflammatory process. Aims: a prospective study regarding the gene expression of proteins: anexin-1 and galectin-1, which has an anti-inflammatory action and is modulated by steroids. Materials and Methods: eleven patients with rhinosinusal polyps suffered a biopsy of their polyps at two moments: in the absence of systemic steroids and during its use. In the two samples we assessed the expression of these genes and compared it to the normal nasal mucosa in the middle meatus. Results: We noticed that the mean expression of the genes which code anexin-1 and galectin-1 was predominantly increased, regardless of the use of steroids in relation to the control nasal mucosa. Notwithstanding, in polyps without the use of steroids, the mean gene expression of anexin-1 was significantly higher than in the polyps which were under the use of steroids. Regarding galectin-1, there was no significant difference between the expression mean values before and after the use of systemic steroids. Conclusion: The genes present an expression increase in the polyp mucosa, regardless of the use of steroids; nonetheless, the relationship of these two genes of anti-inflammatory proteins with steroids did not happen the same way.
Resumo:
Periodontal disease is a chronic inflammation of the attachment structures of the teeth, triggered by potentially hazardous microorganisms and the consequent immune-inflammatory responses. In humans, the T helper type 17 (Th17) lineage, characterized by interleukin-17 (IL-17) production, develops under transforming growth factor-beta (TGF-beta), IL-1 beta, and IL-6 signaling, while its pool is maintained by IL-23. Although this subset of cells has been implicated in various autoimmune, inflammatory, and bone-destructive conditions, the exact role of T lymphocytes in chronic periodontitis is still controversial. Therefore, in this study we investigated the presence of Th17 cells in human periodontal disease. Gingival and alveolar bone samples from healthy patients and patients with chronic periodontitis were collected and used for the subsequent assays. The messenger RNA expression for the cytokines IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 in gingiva or IL-17 and receptor activator for nuclear factor-kappa B ligand in alveolar bone was evaluated by real-time polymerase chain reaction. The production of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 proteins was evaluated by immunohistochemistry and the presence of Th17 cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and IL-17 colocalization. Our data demonstrated elevated levels of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 messenger RNA and protein in diseased tissues as well as the presence of Th17 cells in gingiva from patients with periodontitis. Moreover, IL-17 and the bone resorption factor RANKL were abundantly expressed in the alveolar bone of diseased patients, in contrast to low detection in controls. These results provided strong evidence for the presence of Th17 cells in the sites of chronic inflammation in human periodontal disease.
Resumo:
We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n =70) were divided into five groups: Sedentary Sham (SS): Trained Sham (TS); Trained Hypertensive Sham treated with N(C)-nitro-L-arginine methyl ester (L-NAME) (THS): Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. FIRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS. THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Monocyte macrophages (M phi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to M phi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca2+/Mg2+ enhanced DV binding. This argues against involvement of beta (2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Despite a large number of T cells infiltrating the liver of patients with chronic hepatitis B, little is known about their complexity or specificity. To characterize the composition of these T cells involved with the pathogenesis of chronic hepatitis B (CHB), we have studied the clonality of V beta T cell receptor (TCR)-bearing populations in liver tissue by size spectratyping the complementarity-determining region (CDR3) lengths of TCR transcripts. We have also compared the CDR3 profiles of the lymphocytes infiltrating the liver with those circulating in the blood to see whether identical clonotypes may be detected that would indicate a virus-induced expansion in both compartments. Our studies show that in most of the patients examined, the T cell composition of liver infiltrating lymphocytes is highly restricted, with evidence of clonotypic expansions in 4 to 9 TCR V beta subfamilies. In contrast, the blood compartment contains an average of 1 to 3 expansions. This pattern is seen irrespective of the patient's viral load or degree of liver pathology. Although the TCR repertoire profiles between the 2 compartments are generally distinct, there is evidence of some T cell subsets being equally distributed between the blood and the liver. Finally, we provide evidence for a putative public binding motif within the CDR3 region with the sequence G-X-S, which may be involved with hepatitis B virus recognition.
Resumo:
This report outlines the development of optimized particle inflow gun (PIG) parameters for producing transgenic sorghum (Sorghum bicolor (L.) Moench). Both transient and stable expression were examined when determining these parameters. The uidA reporter gene (GUS) encoding beta -glucuronidase was used in transient experiments and the green fluorescent protein (GFP) used to monitor stable expression. Initially, optimization was conducted using leaf segments, as the generation of sorghum callus in sufficiently large quantities is time-consuming. Following leaf optimization, experiments were conducted using callus, identifying a high similarity between the two tissue types (r(s) = 0.83). High levels of GUS expression were observed in both leaf and callus material when most distant from the DNA expulsion point, and using a pressure greater than 1800 kPa. A higher level of expression was also observed when the aperture of the helium inlet valve was constricted. Using the optimized conditions (pressure of 2200 kPa, distance to target tissue of 15 cm from the expulsion point, and the aperture of the helium inlet valve at one full turn), three promoters (Ubiquitin, Actin1 and CaMV 35S) were evaluated over a 72-h period using GUS as the reporter gene. A significantly higher number of GUS foci were counted with the Ubiquitin construct over this period, compared to the Actin1 and CaMV 35S constructs. Stable callus sectors (on 2 mg l(-1) bialaphos) with GFP expression were visualized for as long as 6 wk post-bombardment. Using this optimized protocol, several plants were regenerated after having been bombarded with the pAHC20 construct (containing the bar gene), with molecular evidence confirming integration.
Resumo:
The specification of the erythroid lineage from hematopoietic stem cells requires the expression and activity of lineage-specific transcription factors. One transcription factor family that has several members involved in hematopoiesis is the Kruppel-like factor (KLF) family [1]. For example, erythroid KLF (EKLF) regulates beta -globin expression during erythroid differentiation [2-6]. KLFs share a highly conserved zinc finger-based DNA binding domain (DBD) that mediates binding to CACCC-box and GC-rich sites, both of which are frequently found in the promoters of hematopoietic genes. Here, we identified a novel Xenopus KLF gene, neptune, which is highly expressed in the ventral blood island (VBI), cranial ganglia, and hatching and cement glands. neptune expression is induced in response to components of the BMP-4 signaling pathway in injected animal cap explants. Similar to its family member, EKLF, Neptune can bind CACCC-box and GC-rich DNA elements. We show that Neptune cooperates with the hematopoietic transcription factor XGATA-1 to enhance globin induction in animal cap explants. A fusion protein comprised of Neptune's DBD and the Drosophila engrailed repressor domain suppresses the induction of globin in ventral marginal zones and in animal caps. These studies demonstrate that Neptune is a positive regulator of primitive erythropoiesis in Xenopus.
Resumo:
The tat gene is required by HIV-1 for efficient reverse transcription and this function of Tat can be distinguished from its role in transcription by RNA polymerase II using tat point mutations that abrogate each function independently The mechanism of Tat's role in reverse transcription, however, is not known, nor is it known whether this role is conserved among trans-activating factors in other retroviruses. Here we examine the abilities of heterologous viral trans-activating proteins from jembrana disease virus (jTat), HIV-2 (Tat2), and equine infectious anemia virus (eTat) to substitute for HIV-1 Tat (Tat1) and restore reverse transcription in HIV-1 carrying an inactivated tat gene. Natural endogenous reverse transcription assays showed that trans-activators from some retroviruses (Tat2 and jTat, but not eTat) could substitute for Tat1 in complementation of HIV-1 reverse transcription. Finally, we show that Y47 is critical for Tat1 to function in reverse transcription, but not HIV-1 gene expression. We mutated the homologous position in jTat to H62Y and found it did not improve its ability to stimulate reverse transcription, but an H62A mutation did inhibit jTat complementation. These data highlight the finding that the role of Tat in reverse transcription is not related to trans-activation and demonstrate that other tat genes conserve this function. (C) 2002 Elsevier Science (USA).
Resumo:
Sox8 is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a key gene in the testis determination pathway in mammals. Like Sox9, Sox8 is expressed in the developing mouse testis around the time of sex determination, suggesting that it might play a role in regulating the expression of testis-specific genes. An early step in male sex differentiation is the expression of anti-Mullerian hormone (AMH) in Sertoli cells. Expression of the Amh gene during sex differentiation requires the interaction of several transcription factors, including SF1, SOX9, GATA4, WT1, and DAX1. Here we show that SOX8 may also be involved in regulating the expression of Amh. Expression of Sox8 begins just prior to that of Amh at 12 days post coitum (dpc) in mouse testes and continues beyond 16 dpc in Sertoli cells. In vitro assays showed that SOX8 binds specifically to SOX binding sites within the Amh minimal promoter and, like SOX9, acts synergistically with SF1 through direct protein-protein interaction to enhance Amh expression, albeit at lower levels compared with SOX9. SOX8 and SOX9 appear to have arisen from a common ancestral gene and may have retained some common functions during sexual development. Our data provide the first evidence that SOX8 may partially compensate for the reduced SOX9 activity in campomelic dysplasia and substitute for Sox9 where Sox9 is either not expressed or expressed too late to be involved in sex determination or regulation of Amh expression.
Resumo:
Although it is the best characterized in vitro model of GH action, the mechanisms used by GH to induce differentiation of murine 3T3-F442A preadipocytes remain unclear. Here we have examined the role of three transcriptional regulators in adipogenesis. These regulators are either rapidly induced in response to GH [Stra13, signal transducer and activator of transcription (Stat) 3] or of central importance to GH signaling (Stat5). Retroviral transfection of 3T3-F442A preadipocytes was used to increase expression of Stra13, Stat3, and Stat5a. Only Stat5a transfection increased the expression of adipogenic markers peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein (C/EBP)alpha, and adipose protein 2/fatty acid-binding protein in response to GH, as determined by quantitative RT-PCR. Transfection with constitutively active Stat3 and Stat5a revealed that constitutively active Stat5a but not Stat3 was able to replace the GH requirement for adipogenesis. Constitutively active Stat5a but not Stat3 was able to increase the formation of lipid droplets and expression of alpha-glycerol phosphate dehydrogenase toward levels seen in mature adipocytes. Constitutively active Stat5a was also able to increase the expression of transcripts for C/EBPalpha to similar levels as GH, and of C/EBPbeta, peroxisome proliferator-activated receptor gamma, and adipose protein 2/fatty acid-binding protein transcripts to a lesser extent. An in vivo role for GH in murine adipogenesis is supported by significantly decreased epididymal fat depot size in young GH receptor-deleted mice, before manifestation of the lipolytic actions of GH. We conclude that Stat5 is a critical factor in GH-induced, and potentially prolactin-induced, murine adipogenesis.
Resumo:
We report here the cloning and the characterization of the T. pyriformis CCT eta gene (TpCCT eta) and also a partial sequence of the corresponding T. thermophila gene (TtCCT eta). The TpCCt eta gene encodes a protein sharing a 60.3% identity with the mouse CCT eta. We have studied the expression of these genes in Tetrahymena exponentially growing cells, cells regenerating their cilia for different periods and during different stages of the cell sexual reproduction. These genes have similar patterns of expression to those of the previously identified TpCCt gamma gene. Indeed, the Tetrahymena CCT eta and CCT gamma genes are up-regulated at 60-120 min of cilia recovery, and in conjugation when vegetative growth was resumed and cell division took place. Our results seem to indicate that both CCT subunits play an important role in the biogenesis of the newly synthesized cilia of Tetrahymena and during its cell division.