988 resultados para GALLIUM
Resumo:
In this work we study the spectrum (bulk and surface modes) of exciton-polaritons in infinite and semi-infinite binary superlattices (such as, ···ABABA···), where the semiconductor medium (A), whose dielectric function depends on the frequency and the wavevector, alternating with a standard dielectric medium B. Here the medium A will be modeled by a nitride III-V semiconductor whose main characteristic is a wide-direct energy gap Eg. In particular, we consider the numerical values of gallium nitride (GaN) with a crystal structure wurtzite type. The transfer-matrix formalism is used to find the exciton-polariton dispersion relation. The results are obtained for both s (TE mode: transverse electric) and p (TM mode: transverse magnetic) polarizations, using three diferent kind of additional boundary conditions (ABC1, 2 e 3) besides the standard Maxwell's boundary conditions. Moreover, we investigate the behavior of the exciton-polariton modes for diferent ratios of the thickness of the two alternating materials forming the superlattice. The spectrums shows a confinement of the exciton-polariton modes due to the geometry of the superlattice. The method of Attenuated Total Reflection (ATR) and Raman scattering are the most adequate for probing this excitations
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Success of tooth replantation is limited because part of the replanted tooth is lost because of progressive root resorption. This study used histomorphometry and immunohistochemistry to evaluate the effect of low-level laser therapy (LLLT) on the healing process of rat teeth replanted after different extra-oral periods, simulating immediate and delayed replantation. Sixty Wistar rats (Rattus norvegicus albinus) had their maxillary right incisors extracted and randomly assigned to six groups (n = 10): C4, C30 and C45, in which the teeth were replanted 4 min (immediate), 30 min (delayed) and 45 min (delayed) after extraction, respectively, and L4, L30 and L45, in which the teeth were replanted after the same extra-alveolar times, but the root surfaces and the alveolar wounds were irradiated with a gallium-aluminum-arsenate (GaAlAs) diode laser before replantation. The animals were sacrificed after 60 days. The anatomic pieces containing the replanted teeth were obtained and processed for either histomorphometrical analysis under optical microscopy or immunohistochemical expression of receptor activator of nuclear factor Kappa-B (RANK), and its ligand (RANKL), osteoprotegerin (OPG) and tartrate-resistant acid phosphatase (TRAP) proteins. Areas of external replacement and inflammatory root resorption were observed in all groups, without statistically significant differences (P > 0.05). Ankylosis was more frequent in L30 than in C30 (P < 0.05). RANKL immunostaining predominated over RANK and OPG immunostaining in both groups with immediate tooth replantation (P < 0.05). For the 45-min extra-alveolar time, however, there was greater evidence of RANK immunostaining compared to RANKL for both control and laser-treated groups (P < 0.05). Positive TRAP immunostaining predominated in L4 and L30 (P < 0.05). In conclusion, under the tested conditions, the treatment of the root surface and the alveolar wound with LLLT did not improve the healing process after immediate and delayed tooth replantation in rats.
Resumo:
Objective: The purpose of this study was to evaluate the effect of low-level laser therapy (LLLT) on wound healing process and pain levels after premolar extraction in adolescents. Background data: The advantage of using LLLT in oral surgeries is the reduction of inflammation and postoperative discomfort; however, the optimal dosing parameters and treatment effects in surgical procedures are inconclusive. Methods: A double-blind, randomized, controlled clinical trial was conducted with 14 patients who were to undergo surgical removal of premolars. Patients were randomly allocated to the LLLT (test) group and placebo (control) group. Patients in the test group received 5.1 J (60 J/cm(2)) of energy density of a gallium-aluminum-arsenide (GaAlAs) diode laser (wavelength, 830 nm; output power, 0.1 W) at three different points intraorally, 1 cm from the target tissue immediately and at 48 and 72 h after the surgical procedure. For patients in the placebo group, the laser device was applied to the same points without activating the hand piece. The wound healing process was evaluated by an independent examiner by visual inspection with the support of digital photographs at baseline and 2, 7, and 15 days postoperatively. Patients recorded the degree of pain using the visual analogue scale (VAS). Results: Compared with the placebo group, the test group showed a lower intensity of pain, but this difference was not statistically significant at any time point. The wound healing process was similar in both groups. Conclusions: Within the limitations of this study, the LLLT parameters used neither increased the wound healing process nor significantly decreased pain intensity after premolar extraction in adolescents.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: To study the effect of an 830-nm gallium-aluminum-arsenic (GaAlAs) diode laser at two different energy densities (5 and 15 J/cm(2)) on the epiphyseal cartilage of rats by evaluating bone length and the number of chondrocytes and thickness of each zone of the epiphyseal cartilage. Background Data: Few studies have been conducted on the effects of low-level laser therapy on the epiphyseal cartilage at different irradiation doses. Materials and Methods: A total of 30 male Wistar rats with 23 days of age and weighing 90 g on average were randomly divided into 3 groups: control group (CG, no stimulation), G5 group (energy density, 5 J/cm(2)), and G15 group (energy density, 15 J/cm(2)). Laser treatment sessions were administered every other day for a total of 10 sessions. The animals were killed 24 h after the last treatment session. Histological slides of the epiphyseal cartilage were stained with hematoxylin-eosin (HE), photographed with a Zeiss photomicroscope, and subjected to histometric and histological analyses. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test. All statistical tests were performed at a significance level of 0.05. Results: Histological analysis and x-ray radiographs revealed an increase in thickness of the epiphyseal cartilage and in the number of chondrocytes in the G5 and G15 groups. Conclusion: The 830-nm GaAlAs diode laser, within the parameters used in this study, induced changes in the thickness of the epiphyseal cartilage and increased the number of chondrocytes, but this was not sufficient to induce changes in bone length.
Resumo:
Objective: To investigate the healing of bone defects in male rats treated with salmon calcitonin, low-level laser therapy (LLLT), or both. Background: Healing of bone defects still represents a challenge to health professionals in several areas. In this article, the effect of calcitonin in combination with LLLT on bone repair was studied. Densitometry was used as a valuable tool for the measurement of bone regeneration. Methods: Sixty male Wistar rats underwent bilateral castration surgery before the creation of a surgical bone defect. The animals were randomly divided into four groups: control, treated with calcitonin (Ca), treated with LLLT (La), and treated with calcitonin and LLLT (CaLa). Groups Ca and CaLa received 2 IU/kg of synthetic salmon calcitonin intra-muscularly three times a week. Groups La and CaLa received laser therapy using a gallium-aluminum-arsenide laser (10mW, 20 J/cm(2), wavelength 830 nm). Control animals were submitted to sham irradiation. The animals were sacrificed 7, 14, and 21 days after surgery, and bone defects were analyzed using densitometry. Results: The CaLa group had a higher degree of bone regeneration 14 and 21 days after surgery. Conclusions: The La and CaLa had significantly higher bone mineral density than the control and Ca groups.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Transparent glass ceramics have been prepared in the Ga2S3-GeS2-CsCI pseudoternary system appropriate heat treatment time and temperature. In situ X-ray diffraction at the heat treatment temperature and Cs-133 and Ga-71 solid-state nuclear magnetic resonance have been performed in function of annealing time to understand the crystallization process. Both techniques have evidenced the nucleating agent role played by gallium with the formation of Ga2S3 nanocrystals. on the other hand, cesium is incorporated very much later into the crystallites during the ceramization. Moreover, the addition of CsCl, which is readily integrated into the glassy network, permits us to shift the optical band gap toward shorter wavelength. Thus, new glass ceramics transmitting in the whole visible range up to 11.5 mu m have been Successfully synthesized from the (Ga2S3)(35)-(GeS2)(25)-CsCl40 base glass composition.
Resumo:
Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO: Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)