913 resultados para Fusion of label field
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.
Resumo:
v. 44 (1973)
Resumo:
The epidemiology of urinary tract infections (UTI) by Staphylococcus saprophyticus has not been fully characterised and strain typing methods have not been validated for this agent. To evaluate whether epidemiological relationships exist between clusters of pulsed field gel-electrophoresis (PFGE) genotypes of S. saprophyticus from community-acquired UTI, a cross-sectional surveillance study was conducted in the city of Rio de Janeiro, Brazil. In total, 32 (16%) female patients attending two walk-in clinics were culture-positive for S. saprophyticus. Five PFGE clusters were defined and evaluated against epidemiological data. The PFGE clusters were grouped in time, suggesting the existence of community point sources of S. saprophyticus. From these point sources, S. saprophyticus strains may spread among individuals.
Resumo:
The 2008 Data Fusion Contest organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee deals with the classification of high-resolution hyperspectral data from an urban area. Unlike in the previous issues of the contest, the goal was not only to identify the best algorithm but also to provide a collaborative effort: The decision fusion of the best individual algorithms was aiming at further improving the classification performances, and the best algorithms were ranked according to their relative contribution to the decision fusion. This paper presents the five awarded algorithms and the conclusions of the contest, stressing the importance of decision fusion, dimension reduction, and supervised classification methods, such as neural networks and support vector machines.
Resumo:
The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.
Resumo:
Secondary accident statistics can be useful for studying the impact of traffic incident management strategies. An easy-to-implement methodology is presented for classifying secondary accidents using data fusion of a police accident database with intranet incident reports. A current method for classifying secondary accidents uses a static threshold that represents the spatial and temporal region of influence of the primary accident, such as two miles and one hour. An accident is considered secondary if it occurs upstream from the primary accident and is within the duration and queue of the primary accident. However, using the static threshold may result in both false positives and negatives because accident queues are constantly varying. The methodology presented in this report seeks to improve upon this existing method by making the threshold dynamic. An incident progression curve is used to mark the end of the queue throughout the entire incident. Four steps in the development of incident progression curves are described. Step one is the processing of intranet incident reports. Step two is the filling in of incomplete incident reports. Step three is the nonlinear regression of incident progression curves. Step four is the merging of individual incident progression curves into one master curve. To illustrate this methodology, 5,514 accidents from Missouri freeways were analyzed. The results show that secondary accidents identified by dynamic versus static thresholds can differ by more than 30%.
Resumo:
Many organelles exist in an equilibrium of fragmentation into smaller units and fusion into larger structures, which is coordinated with cell division, the increase in cell mass, and envi¬ronmental conditions. In yeast cells, organelle homeostasis can be studied using the yeast vacuole (lysosome) as a model system. Yeast vacuoles are the main compartment for degrada¬tion of cellular proteins and storage of nutrients, ions and metabolites. Fission and fusion of vacuoles can be induced by hyper- and hypotonic shock in vivo, respectively, and have also been reconstituted in vitro using isolated vacuoles. The conserved serine/threonine kinase TOR (target of rapamycin) is a central nutrient sensor and regulates cell growth and metabolism. In yeast, there are two TOR proteins, Torlp and Tor2p, which are part of larger protein complexes, TORCI and TORC2. Only TORCI is rapamycin-sensitive. Disregulation of TOR signaling is linked to a multitude of diseases in humans, e.g. cancer, neurodegenerative diseases and metabolic syndrome. It has been shown that TORCI localizes to the vacuole membrane, and recent findings of our laboratory demonstrated that TORCI positively regulates vacuole fragmentation. This suggests that the fragmentation machinery should contain target proteins phosphorylated by TORCI. I explored the rapamycin-and fission-dependent vacuolar phosphoproteome during frag¬mentation, using a label-free mass-spectrometry approach. I identified many vacuolar factors whose phosphorylation was downregulated in a TORCI- and fission-dependent manner. Among them were known protein complexes that are functionally linked to fission or fusion, like the HOPS, VTC and FAB1 complexes. Hence, TORCI-dependent phosphorylations might positively regulate vacuole fission. Several candidates were chosen for detailed microscopic analysis of in vivo vacuole frag-mentation, using deletion mutants. I was able to identify novel factors not previously linked to fission phenotypes, e.g. the SEA complex, Pib2, and several vacuolar amino acid transporters. Transport of neutral and basic amino acids across the membrane seems to control vacuole fission, possibly via TORCI. I analyzed vacuolar fluxes of amino acids in wildtype yeast cells and found evidence for a selective vacuolar export of basic amino acids upon hyperosmotic stress. This leads me to propose a model where vacuolar export of amino acids is necessary to reshape the organelle under salt stress. - Le nombre et la taille de certaines organelles peut être déterminé par un équilibre entre la fragmentation qui produit des unités plus petites et la fusion qui génère des structures plus larges. Cet équilibre est coordonné avec la division cellulaire, l'augmentation de la masse cellulaire, et les conditions environnementales. Dans des cellules de levure, l'homéostasie des organelles peut être étudié à l'aide d'un système modèle, la vacuole de levure (lysosome). Les vacuoles constituent le principal compartiment de la dégradation des protéines et de stockage des nutriments, des ions et des métabolites. La fragmentation et la fusion des vacuoles peuvent être respectivement induites par un traitement hyper- ou hypo-tonique dans les cellules vivantes. Ces processus ont également été reconstitués in vitro en utilisant des vacuoles isolées. La sérine/thréonine kinase conservée TOR (target of rapamycin/cible de la rapamycine) est un senseur de nutriments majeur qui régule la croissance cellulaire et le métabolisme. Chez la levure, il existe deux protéines TOR, Torlp et Tor2p, qui sont les constituants de plus grands complexes de protéines, TORCI et TORC2. TORCI est spécifiquement inhibé par la rapamycine. Une dysrégulation de la signalisation de TOR est liée à une multitude de maladies chez l'homme comme le cancer, les maladies neurodégénératives et le syndrome métabolique. Il a été montré que TORCI se localise à la membrane vacuolaire et les découvertes récentes de notre laboratoire ont montré que TORCI régule positivement la fragmentation de la vacuole. Ceci suggère que le mécanisme de fragmentation doit être contrôlé par la phosphorylation de certaines protéines cibles de TORCI. J'ai exploré le phosphoprotéome vacuolaire lors de la fragmentation, en présence ou absence de rapamycine et dans des conditions provoquant la fragmentation des organelles. La méthode choisie pour réaliser la première partie de ce projet a été la spectrométrie de masse différentielle sans marquage. J'ai ainsi identifié plusieurs facteurs vacuolaires dont la phosphorylation est régulée d'une manière dépendante de TORCI et de la fragmentation. Parmi ces facteurs, des complexes protéiques connus qui sont fonctionnellement liées à fragmentation ou la fusion, comme les complexes HOPS, VTC et FAB1 ont été mis en évidence. Par conséquent, la phosphorylation dépendante de TORCI peut réguler positivement la fragmentation des vacuoles. Plusieurs candidats ont été choisis pour une analyse microscopique détaillée de la fragmentation vacuolaire in vivo en utilisant des mutants de délétion. J'ai été en mesure d'identifier de nouveaux facteurs qui n'avaient pas été encore associés à des phénotypes de fragmentation tels que les complexes SEA, Pib2p, ainsi que plusieurs transporteurs vacuolaires d'acides aminés. Le transport des acides aminés à travers la membrane semble contrôler la fragmentation de la vacuole. Puisque ces transporteurs sont phosphorylés par TORCI, ces résultats semblent confirmer la
Resumo:
The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices.
Resumo:
We report experimental studies of crystals of Mn12 molecular magnetic clusters in pulsed magnetic fields with sweep rates up to 410^3 T/s . The steps in the magnetization curve are observed at fields that are shifted with respect to the resonant field values. The shift systematically increases as the rate of the field sweep goes up. These data are consistent with the theory of the collective dipolar relaxation in molecular magnets.
Resumo:
The recent observation of steps at regular intervals of magnetic field in the hysteresis loops of oriented crystals of the spin-10 molecular magnet Mn12O12(CH3COO)16(H2O)4 has been attributed to resonant tunneling between spin states. Here, we investigate the effect on the relaxation rate of applying the magnetic field at an angle with respect to the easy axis of magnetization. We find that the position of the resonances is independent of the transverse component of the field, and is determined solely by the longitudinal component. On the other hand, a transverse field significantly increases the relaxation rate, both on and off resonance. We discuss classical and quantum mechanical interpretations of this effect
Resumo:
Fréedericksz transition under twist deformation in a nematic layer is discussed when the magnetic field has a random component. A dynamical model which includes the thermal fluctuations of the system is presented. The randomness of the field produces a shift of the instability point. Beyond this instability point the time constant characteristic of the approach to the stationary stable state decreases because of the field fluctuations. The opposite happens for fields smaller than the critical one. The decay time of an unstable state, calculated as a mean first-passage time, is also decreased by the field fluctuations.
Resumo:
Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.
Resumo:
Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.
Resumo:
Removal of ice from roads is of the more challenging task in winter highway maintenance. The best mechanical method is to use a truck with underbody plow blade, but such equipment is not available to all agencies charged with winter maintenance operations. While counties and cities often use motor graders to scrape ice, it would be of great benefit if front mounted plows could be used effectively for ice removal. To reveal and understand the factors that influence the performance of these plows, measurement of the forces experienced by the plow blades during ice scraping is desirable. This study explores the possibility of using accelerometers to determine the forces on a front-mounted plow when scraping ice. The plow was modeled by using a dynamic approach. The forces on the plow were to be determined by the measurement of the accelerations of the plow. Field tests were conducted using an "as is" front-mounted plow instrumented with accelerometers. The results of the field tests indicate that in terms of ice removal, the front-mounted plow is not favorable equipment. The major problem in this study is that the front mounted plow was not able to cut ice, and therefore experienced no significant scraping forces. However, the use of accelerometers seems to be promising for analyzing the vibration problems of the front-mounted plow.