920 resultados para Fuel cells. Microwave. Perovskite. Electrocatalyst


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in the laboratory (major by-product of some second generation biorefinery processes); it is also an important chemical due to its myriad applications in pharmaceuticals and industry. In recent years, formic acid has been used as an important fuel either without reformation (in direct formic acid fuel cells, DFAFCs) or with reformation (as a potential chemical hydrogen storage material). Owing to the better efficiency of DFAFCs compared to several other PEMFCs and reversible hydrogen storage systems, formic acid could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future. This perspective is focused on recent developments in the use of formic acid as a reversible source for hydrogen storage. Recent developments in this direction will likely give access to a variety of low-cost and highly efficient rechargeable hydrogen fuel cells within the next few years by the use of suitable homogeneous metal complex/heterogeneous metal nanoparticle-based catalysts under ambient reaction conditions. The production of formic acid from atmospheric CO2 (a greenhouse gas) will decrease the CO2 content and may be helpful in reducing global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a facile synthesis of three-dimensional (3D) nanodendrites of Pd nanoparticles (NPs) and nitrogen-doped carbon NPs (N-CNPs) by electroless deposition of Pd2+ ions. N-CNPs being an electron-enriched material act as a reducing agent. Moreover, the availability of a variety of nitrogen species in N-CNPs promotes the open arm structure as well as stabilizes the oriented 3D assembly of primary Pd NPs. The dendrites exhibit superior catalytic activity for methanol (0.5 M) oxidation in alkaline media (1 M NaOH) which is ascribed to the large electrochemical active surface area and the enhanced mass activity with repeated use. Further mass activity improvement has been realized after acid-treatment of dendrites which is attributed to the increment in the -OH group. The dendrites show higher mass activity (J(f) similar to 653 A g(-1)) in comparison with a commercial Pt-carbon/Pd-carbon (Pt-C/Pd-C) catalyst (J(f) similar to 46 and 163 A g(-1), respectively), better operational stability, superior CO tolerance with I-f/I-b (similar to 3.7) over a commercial Pt-C/Pd-C catalyst (I-f/I-b similar to 1.6 and 1.75, respectively) and may serve as a promising alternative to commercial Pt-C catalysts for anode application in alkaline fuel cells. To ensure the adaptability of our 3D-nanodendrites for other catalytic activities, we studied 4-nitrophenol reduction at room temperature. The 3D-nanodendrites show excellent catalytic activity toward 4-nitrophenol reduction, as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

开展了不同重力情况下燃料电池性能的实验研究.利用微重力落塔,对常重力和微重力条件下燃料电池发电时其内部的两相流动开展了可视化现场观测.对重力因素对燃料电池内部传质过程的影响进行了分析和讨论.实验结果表明:当电流密度较大时,在微重力环境中燃料电池性能较常重力环境中的有较明显下降.由于微重力条件下浮升力的消失导致气体不能及时从流道中排出,进而对直接甲醇燃料电池内的传质过程产生负面影响.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用落塔开展了不同重力情况下质子交换膜燃料电池性能的实验研究.对常重力和微重力条件下质子交换膜燃料电池发电时其阴极蛇形流场内部的两相流动开展了可视化现场观测.对重力因素对质子交换膜燃料电池内部传质过程的影响进行了分析和讨论.实验结果表明:在常重力环境中,液态水堆积在竖置流道的底部,无法有效排出.聚集在流道内的液态水与反应气体在流道内形成气/液两相流动.在微重力环境中,液态水在气体推动力的作用下从流道的底部上升并沿流道向出口流动.聚集在流道内的液态水排除后,减小了反应气体(氧气)从流道向催化层的传递阻力,从而使质子交换膜燃料电池的性能得到提高.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]Hoy en día los vehículos usados en la extracción de sangre utilizan un motor de combustión interna, no solamente para sus desplazamientos, sino también para generar electricidad con la que poder utilizar todos los aparatos del interior. Como consecuencia, el autobús es una fuente importante de ruidos y contaminación, ya que el motor diesel está funcionando durante las largas paradas en las que se realiza dicha actividad. El objetivo del proyecto es diseñar un sistema innovador basado en pilas de combustible que sirva para alimentar todos los equipos y dispositivos, evitando el ruido, las vibraciones y los gases contaminantes. Para ello y en primer lugar, será necesario estimar el consumo total del autobús. Tras esto, también se tomarán una serie de decisiones con el fin de mejorar la eficiencia energética del autobús. Finalmente, se hará un diseño del sistema energético, el cual debe incluir una pila de combustible, junto con todos sus sistemas asociados, y todas las especificaciones.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analysed the cost-effectiveness of avoiding carbon dioxide (CO2) emissions using advanced internal combustion engines, hybrids, plug-in hybrids, fuel cell vehicles and electric vehicles across the nine UK passenger vehicles segments. Across all vehicle types and powertrain groups, minimum installed motive power was dependent most on the time to accelerate from zero to 96.6km/h (60mph). Hybridising the powertrain reduced the difference in energy use between vehicles with slow (t z - 60 > 8 s) and fast acceleration (t z - 60 < 8 s) times. The cost premium associated with advanced powertrains was dependent most on the powertrain chosen, rather than the performance required. Improving non-powertrain components reduced vehicle road load and allowed total motive capacity to decrease by 17%, energy use by 11%, manufacturing cost premiums by 13% and CO2 emissions abatement costs by 15%. All vehicles with advanced internal combustion engines, most hybrid and plug-in hybrid powertrains reduced net CO2 emissions and had lower lifetime operating costs than the respective segment reference vehicle. Most powertrains using fuel cells and all electric vehicles had positive CO2 emissions abatement costs. However, only vehicles using advanced internal combustion engines and parallel hybrid vehicles may be attractive to consumers by the fuel savings offsetting increases in vehicle cost within two years. This work demonstrates that fuel savings are possible relative to today's fleet, but indicates that the most cost-effective way of reducing fuel consumption and CO2 emissions is by advanced combustion technologies and hybridisation with a parallel topology. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

燃料电池以其高效、环境友好的发电方式,被誉为21世纪的能源技术。其中,直接甲醇燃料电池(DMFC)更以燃料甲醇来源丰富,价格低廉,储存、携带方便而成为近年的研究热点。目前DNDFC存在的一个主要问题是"甲醇透过",即甲醇从阳极穿过固体电解质膜进入到阴极,而阴极催化剂一般是Pt/C,因此在阴极会同时发生甲醇氧化和氧还原,严重降低了电池的库仑效率和电压效率。此夕卜甲醇及其氧化中间产物还会使P口C中毒。虽然试验了一些低甲醇透过率的电解质膜,但仍无法完全消除甲醇透过。因此研制对氧还原催化活性高而对甲醇氧化没有活性,即耐甲醇的氧还原电催化剂是一个十分重要的课题。本论文主要从催化剂的组成、热处理、制备方法和载体等方面进行了相关研究,此外,还开展了生物燃料电池阴极电催化剂的研究。具体结果如下:1.热处理对电催化剂性能的影响(1)首次研究了炭载铂(Pt/C)对氧还原和甲醇氧化的催化活性与热处理温度的关系。发现P"C的催化活性随热处理温度的升高而降低,其原因是热处理使R/C中Pt的结晶度提高、粒径变大、表面浓度降低。但是,热处理使PUC催化甲醇氧化活性的降低程度远大于催化氧还原活性的降低程度。该研究提供了一种有效改善P口C催化剂耐甲醇性能的简便方法。(2)研究了炭载四狡基酞著钻(CoPcTc/C)和炭载四苯基铁叶琳(FeTPP/C)对氧还原和甲醇氧化的催化活性与热处理温度的关系。发现800℃热处理的CoPcTc/C对氧还原的催化活性最高;XPS和XRD分析表明,其活性位主要为含CoN4结构的物质。FeTPP/C催化剂与CoPcTc/C类似,700℃热处理的对氧还原催化活性最高。二者对甲醇氧化都没有活性。(3)首次研究了炭载四苯基铁叶琳一铂(FeTPP-Pt/C)复合催化剂对氧还原和甲醇氧化的催化活性与热处理温度的关系。发现热处理使FeTPP-Pt/C对氧还原的催化活性提高,并且优于相应P灯C,这是因为复合催化剂对氧还原的催化活性来源于FeTPP和Pt两部分。另外,FeTPP-Pt/C对甲醇氧化的催化活性随热处理温度的升高而降低,降低幅度大于相应Pt/C,这是因为在复合催化剂中,FeTPP在Pt/C表面的分散会降低甲醇与R的接触。700℃热处理的FeTPP-Pt/C对氧还原的催化活性最高,并且耐甲醇能力很强,非常适合作为DMFC阴极电催化剂。(4)首次研究了FeTPP-TiO2/C复合催化剂对氧还原的催化活性与热处理温度的关系。发现70。℃热处理的FeTPP-TiO2/C对氧还原的催化活性最高,并且稳定性好;复合催化剂提高了氧还原的电子转移数。这是因为TIOZ能够将FeTPP催化氧还原过程中产生的H2O2及时分解为O2和H2O,再重新被FeTPP还原。TIOZ的加入有望改善过渡金属大环化合物催化剂的长程稳定性。此夕卜该复合催化剂对甲醇氧化没有活性。2.制备方法对电催化剂性能的影响(1)首次同时研究了Pt/C对氧还原和甲醇氧化的催化性能,讨论了影响Pt/C催化活性的主要因素。XRD、XPS和TEM分析表明,无定型Pt含量高的Pt/C对氧还原的催化活性较高,表面氧化物含量高的Pt/C对甲醇氧化的催化活性较高。为制备耐甲醇能力强、催化氧还原活性高的Pt/C催化剂提供了理论参考。(2)比较了平衡吸附法和强制沉积法制备的FeTPP-Pt/C催化剂的性能,发现前者对氧还原和甲醇氧化的催化活性都高于后者,这是因为由强制吸附法制备的复合催化剂,FeTPP将一部分Pt覆盖,使其无法发挥活性。3.活性炭载体对Pt/C电催化剂性能的影响利用多种分析手段,系统比较了VulcanXC-72炭和上海松木炭的物理、化学性质对Pt/C电催化剂性能的影响。发现孔径适当、电导率高、灰分和表面含氧基团较少的活性炭作载体时,制得的P口C催化剂的性能较好。为PEMFC中电催化剂载体的选择提供了一些理论依据。4.生物燃料电池阴极电催化剂的研究首次制备了炭载微过氧化物酶-11(MP-11/C)电催化剂,通过循环伏安法、线性扫描法和旋转圆盘电极技术研究发现,MP-11/C对O2还原具有较高的催化活性,并且稳定性好,为生物燃料电池的研制提供了一种较好的酶固定方法。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the cross-over rates of methanol and ethanol, respectively, through Nafion(R)-115 membranes at different temperatures and different concentrations have been measured and compared. The changes of Nafion(R)-115 membrane porosity in the presence of methanol or ethanol aqueous solutions were also determined by weighing vacuum-dried and alcohol solution-equilibrated membranes. The techniques of anode polarization and adsorption stripping voltarnmetry were applied to compare the electrochemical activity and adsorption ability, respectively. To investigate the consequences of methanol and ethanol permeation from the anode to the cathode on the performance of direct alcohol fuel cells (DAFCs), single DAFC tests, with methanol or ethanol as the fuel, have been carried out and the corresponding anode and cathode polarizations versus dynamic hydrogen electrode (DHE) were also performed. The effect of alcohol concentration on the performance of PtRu/C anode-based DAFCs was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel carbon-supported palladium-rich Pd3Pt1/C catalyst prepared by a modified polyol process showed a better cell performance than Pt/C in direct methanol fuel cells, which may be attributed to palladium's inactivity to methanol electro-oxidation while exhibiting good performance to oxygen reduction reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified subcell approach was adopted to evaluate the current density distributions of proton exchange membrane fuel cells (PEMFCs) with different electrodes. Conventional hydrophobic electrodes showed better performance under flooding conditions compared to hydrophilic electrodes. The thin-film hydrophilic electrode performed better in the absence of liquid water, but it was more readily flooded. A composite catalyst layer was designed with 2/3 of the area from the inlet prepared hydrophilic and the remaining 1/3 area hydrophobic. The composite catalyst layer with commercial scale dimension showed notable enhanced performance in the concentration polarization region. (C) 2004 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, rapid and controllable confinement of one-dimensional (1D) hollow PtCo nanomaterials on an indium tin oxide (ITO) electrode surface was simply realized via magnetic attraction. The successful assembly was verified by scanning electron microscopy (SEM) and cyclic voltammetry, which showed that a longer exposure time of the electrode to the suspension of these 1D hollow nanomaterials (magnetic suspension) led to a larger amount of attached 1D hollow PtCo nanomaterials.