986 resultados para Force Distribution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claims that violence is gender-neutral are increasingly becoming “common sense” in Canada. Antifeminist groups assert that the high rates of woman abuse uncovered by major Canadian national surveys conducted in the early 1990s are greatly exaggerated and that women are as violent as men. The production of degendered rhetoric about “intimate partner violence” contributes to claims that women’s and men’s violence is symmetrical and mutual. This article critically evaluates common claims about Canadian women’s use of nonlethal force in heterosexual intimate relationships in the context of the political struggle over the hegemonic frame for violence and abuse. The extant Canadian research documenting significant sex differences in violence and abuse against adult intimate partners is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The purpose of the study was to establish regression equations that could be used to predict muscle thickness and pennation angle at different intensities from electromyography (EMG) based measures of muscle activation during isometric contractions. Design Cross-sectional study. Methods Simultaneous ultrasonography and EMG were used to measure pennation angle, muscle thickness and muscle activity of the rectus femoris and vastus lateralis muscles, respectively, during graded isometric knee extension contractions performed on a Cybex dynamometer. Data form fifteen male soccer players were collected in increments of approximately 25% intensity of the maximum voluntary contraction (MVC) ranging from rest to MVC. Results There was a significant correlation (P < 0.05) between ultrasound predictors and EMG measures for the muscle thickness of rectus femoris with an R2 value of 0.68. There was no significant correlation (P > 0.05) between ultrasound pennation angle for the vastus lateralis predictors for EMG muscle activity with an R2 value of 0.40. Conclusions The regression equations can be used to characterise muscle thickness more accurately and to determine how it changes with contraction intensity, this provides improved estimates of muscle force when using musculoskeletal models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prime objective of drying is to enhance shelf life of perishable food materials. As the process is very energy intensive in nature, researchers are trying to minimise energy consumption in the drying process. In order to determine the exact amount of energy needed for drying a food product, understanding the physics of moisture distribution and bond strength of water within the food material is essential. In order understand the critical moisture content, moisture distribution and water bond strength in food material, Thermogravimetric analysis (TGA) can be properly utilised. This work has been conducted to investigate moisture distribution and water bond strength in selected food materials; apple, banana and potato. It was found that moisture distribution and water bond strength influence moisture migration from the food materials. In addition, proportion of different types of water (bound, free, surface water) has been simply identified using TGA. This study provides a better understanding of water contents and its role in drying rate and energy consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. Methods Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. Results There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force thanthe hemispherical cup in the high-density bone analogue (p = 0.006). Conclusions Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within– and between–day repeatability of spatial, temporal and vertical ground reaction forces measured by a treadmill system instrumented with a capacitance–based pressure platform. Methods Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM–THM–S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30–second capture period, equating to an average of 52 ± 5 steps of steady–state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between–session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. Results There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within–day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. Conclusions The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis documented pathogenic species of nontuberculous mycobacteria in the Brisbane water distribution system. When water and shower aerosol strains were compared with human strains of mycobacteria, the study found that the likelihood of acquiring infection from municipal water was specific for four main species. The method for isolation of mycobacteria from water was refined, followed by sampling from 220 sites across Brisbane. A variety of species (incl 15 pathogens) were identified and genotypically compared to human strains. For M. abscessus and M. lentiflavum, water strains clustered with human strains. Pathogenic strains of M. kansasii were found, though non-pathogenic strains dominated. Waterborne strains of M. fortuitum differed to human strains. Extensive home sampling of 20 patients with NTM disease, supported the theory that the risk of acquiring NTM from water or shower aerosols appears species specific for M. avium, M. kansasii, M. lentiflavum and M. abscessus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We live in a time of change, of rapid change in some cases. Regardless of where we live as Indigenous peoples we see this, feel this, know this and understand this. Yet how do we manage this? At times Indigenous knowledge and Western knowledge are aligned and at other times diametrically opposed. This is also the case when examining how Indigenous knowledges are viewed, accessed and used even when politicians, governments and institutions are searching for answers and solutions for Indigenous people and for broader Australian society. Sometimes we have witnessed Indigenous knowledges too far down the back, at the bottom of the list and even disregarded. In some cases Indigenous peoples and our knowledges have been positioned as the victims of modernity. Imagine if we could draw on the strength of Indigenous knowledges as the driving force to change direction or for change. We can do this. This paper will explore some of the ways we might do this and bring about an improved society for all peoples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract BACKGROUND: An examination of melanoma incidence according to anatomical region may be one method of monitoring the impact of public health initiatives. OBJECTIVES:   To examine melanoma incidence trends by body site, sex and age at diagnosis or body site and morphology in a population at high risk. MATERIALS AND METHODS:   Population-based data on invasive melanoma cases (n = 51473) diagnosed between 1982 and 2008 were extracted from the Queensland Cancer Registry. Age-standardized incidence rates were calculated using the direct method (2000 world standard population) and joinpoint regression models were used to fit trend lines. RESULTS:   Significantly decreasing trends for melanomas on the trunk and upper limbs/shoulders were observed during recent years for both sexes under the age of 40 years and among males aged 40-59years. However, in the 60 and over age group, the incidence of melanoma is continuing to increase at all sites (apart from the trunk) for males and on the scalp/neck and upper limbs/shoulders for females. Rates of nodular melanoma are currently decreasing on the trunk and lower limbs. In contrast, superficial spreading melanoma is significantly increasing on the scalp/neck and lower limbs, along with substantial increases in lentigo maligna melanoma since the late 1990s at all sites apart from the lower limbs. CONCLUSIONS:   In this large study we have observed significant decreases in rates of invasive melanoma in the younger age groups on less frequently exposed body sites. These results may provide some indirect evidence of the impact of long-running primary prevention campaigns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Price based technique is one way to handle increase in peak demand and deal with voltage violations in residential distribution systems. This paper proposes an improved real time pricing scheme for residential customers with demand response option. Smart meters and in-home display units are used to broadcast the price and appropriate load adjustment signals. Customers are given an opportunity to respond to the signals and adjust the loads. This scheme helps distribution companies to deal with overloading problems and voltage issues in a more efficient way. Also, variations in wholesale electricity prices are passed on to electricity customers to take collective measure to reduce network peak demand. It is ensured that both customers and utility are benefitted by this scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.